Updating search results...

Search Resources

437 Results

View
Selected filters:
  • engineering
A Good Foundation
Rating
0.0 stars

Students explore the effects of regional geology on bridge foundation, including the variety of soil conditions found beneath foundations. They learn about shallow and deep foundations, as well as the concepts of bearing pressure and settlement.

Author:
Malinda Schaefer Zarske
Natalie Mach
Denise W. Carlson
Integrated Teaching and Learning Program, College of Engineering,
Denali Lander
Jonathan S. Goode
TeachEngineering.org
Christopher Valenti
Joe Friedrichsen
Homeward Bound
Rating
0.0 stars

Students review the what they have learned throughout the five lessons in this unit. This includes a review of many types of engineers, reminding students of the various everyday products, structures and processes they design and create in our world.

Author:
Janet Yowell
Integrated Teaching and Learning Program,
Katherine Beggs
Denali Lander
TeachEngineering.org
Abigail Watrous
Global Enterprise for Micro-Mechanics and Molecular Medicine (GEM4), Summer 2006
Rating
0.0 stars

GEM4 VisionGEM4 has brought together researchers and professionals in major institutions across the globe with distinctly different, but complementary, expertise and facilities to address significant problems at the intersections of select topics of engineering, life sciences, technology, medicine and public health.GEM4 creates new models for interactions across scientific disciplinary boundaries whereby problems spanning the range of fundamental science to clinical studies and public health can be addressed on a global scale through strategic international partnerships.Through initial focus areas in cell and molecular biomechanics, and environmental health, in the context of select human diseases, GEM4 creates a global forum for the definition and exploration of grand challenges and scientific studies, for the cross-fertilization of ideas among engineers, life scientists and medical professionals, and for the development of novel educational tools.GEM4 ActivitiesGEM4 enables the brokering of engineers, life scientists and medical professionals with shared facilities and joint students and post-doctoral fellows to tackle major problems in the context of human health and diseases that call for state-of-the-art experimental and computational tools in cell and molecular mechanics, biology and medicine. Broad examples of problems addressed include:infectious diseases such as malaria,cancer,cardiovascular diseases,biomechanical origins of inflammation.In each of these areas, the initial emphasis has included (but will not be limited to) molecular, subcellular and cellular mechanics applied to biomedicine, where a single investigator or institution is not likely to have the full spectrum of expertise, infrastructure or resources available to cover fundamental molecular science all the way to clinical studies and societal implications. Currently, twelve institutions in North America, Europe and Asia participate in this effort as Core institutions, focusing on mechanistic studies, as well as novel methods for diagnostics, vaccines or drug development and delivery.Funds have been raised to provide a structure for coordinated studies from major organizations under the umbrella of GEM4. These funds are being used for:organization of major symposia/conferences specifically targeted at the theme areas of the initiative,training grants for student fellowships for the partner institutions,summer schools to develop teaching materials,the exchange of students and researchers,operations of a central secretariat for handling the administrative and infrastructure details for such interactions,maintenance of a web site for dissemination of information.

Author:
Kamm, Roger D.
Audio Engineers: Sound Weavers
Rating
0.0 stars

In this lesson, students are introduced to audio engineers. They discover in what type of an environment audio engineers work and exactly what they do on a day-to-day basis. Students come to realize that audio engineers help produce their favorite music and movies.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Michael Bendewald
TeachEngineering.org
Swinging on a String
Rating
0.0 stars

Students explore how pendulums work and why they are useful in everyday applications. In a hands-on activity, they experiment with string length, pendulum weight and angle of release. In an associated literacy activity, students explore the mechanical concept of rhythm, based on the principle of oscillation, in a broader biological and cultural context in dance and sports, poetry and other literary forms, and communication in general.

Author:
Ben Heavner
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Sabre Duren
Denise Carlson
TeachEngineering.org
Creating Your Own Sunset
Rating
0.0 stars

This activity gives a visual representation of how we are able to observe many colors in a sunrise or sunset.

Author:
Sherrie Seidensticker, Jeffers Pond Elementary, Prior Lake Minnesota, adapted from the web page scifun.chem.wis.edu/HomeExpts/BlueSky.html
Seidensticker, Sherrie
The Physics and Engineering of a Trebuchet
Rating
0.0 stars

This activity is a hands on investigation in which students will construct, and launch a trebuchet.

Author:
Brad Hubred
Brad Hubred, Little Falls Community Middle School, Little Falls, MN Some of the activities for this lesson are from the activity book called "Trebuchet's teacher's guide" by: Jennifer Fenske, published by: Pitsco, Inc. in 2006.
Properties of Cations: Flame Test Lab
Rating
0.0 stars

In this lab students will make qualitative observations of flame color, a property of metals, to identify unknown metals in salt compounds.

Author:
Sharon M. Welter
Sharon M. Welter, Shakopee MN, based on a number of flame test labs and resources
Water Sphere Lens
Rating
0.0 stars

In this activity about light and refraction, learners make a lens and magnifying glass by filling a bowl with water. Learners explore why the lens inverts images and also reverses the motion of images. Use this activity to introduce learners to basic principles of light and lenses. Activity includes light-ray diagram to explain how image is formed.

Author:
The Exploratorium
California Department of Education
NEC Foundation of America
National Science Foundation
Colored Shadows
Rating
0.0 stars

In this optics activity, learners discover that not all shadows are black. Learners explore human color perception by using colored lights to make additive color mixtures. With three colored lights, learners can make shadows of seven different colors. They can also explore how to make shadows of individual colors, including black. Use this activity demonstrate how receptors in the retina of the eye work to see color.

Author:
The Exploratorium
California Department of Education
NEC Foundation of America
National Science Foundation
Pinhole Magnifier
Rating
0.0 stars

In this activity related to light and perception, learners use a pinhole in an index card as a magnifying glass to help their eye focus on a nearby object. Learners will also discover that because this magnifier limits the amount of light that reaches their eye from the object, the pinhole makes the object appear dimmer. Learners are encouraged to explore using pins and needles with different diameters to make different-sized holes in index cards to see how this affects the image. They can also try forming a pinhole by curling their index finger.

Author:
The Exploratorium
California Department of Education
NEC Foundation of America
National Science Foundation
Giant Lens
Rating
0.0 stars

In this activity about light and refraction, learners discover how a lens creates an image that hangs in midair. A large Fresnel lens creates upside-down images of distant objects and right-side-up images of nearby objects. Learners can locate the upside-down images by using a piece of white paper as a screen. The right-side-up images are harder to find. Activity includes detailed explanations and diagrams to explain how the images are created.

Author:
National Science Foundation
NEC Foundation of America
California Department of Education
The Exploratorium
Don Rathjen
Traffic Lights
Rating
0.0 stars

Students learn about traffic lights and their importance in maintaining public safety and order. Using a Parallax® Basic Stamp 2 microcontroller, students work in teams on the engineering challenge to build a traffic light with a specific behavior. In the process, they learn about light-emitting diodes (LEDs), and how their use can save energy. Students also design their own requirements based on real-world observations as they learn about traffic safety and work towards an interesting goal within the realm of what is important in practice. Knowledge gained from the activity is directly transferrable to future activities, and skills learned are scalable to more ambitious class projects.

Author:
Janet Yowell
Pavel Khazron
AMPS GK-12 Program,
TeachEngineering.org
Lindrick Outerbridge
River Flow Rate
Rating
0.0 stars

Students build on their understanding and feel for flow rates, as gained from the associated Faucet Flow Rate activity, to estimate the flow rate of a local river. The objective is to be able to relate laboratory experiment results to the environment. They use the U.S. Geological Survey website (http://waterdata.usgs.gov/nwis/rt) to determine the actual flow rate data for their river, and compare their estimates to the actual flow rate. For this activity to be successful, choose a nearby river and take a field trip or show a video so students gain a visual feel for the flow of the nearby river.

Author:
Civil and Environmental Engineering Department,
Karen Johnson
Bobby Rinehart
TeachEngineering.org
Mike Mooney
Viscosity: The Flow of Milk
Rating
0.0 stars

Students study the physical properties of different fluids and investigate the relationship between the viscosities of liquid and how fast they flow through a confined area. Student groups conduct a brief experiment in which they quantify the flow rate to understand how it relates to a fluid's viscosity and ultimately chemical composition. They explore these properties in milk and cream, which are common fluids whose properties (and even taste!) differ based on fat content. They examine control samples and unknown samples, which they must identify based on how fast they flow. To identify the unknowns requires an understanding of the concept of viscosity. For example, heavy cream flows at a slower rate than skim milk. Ultimately, students gain an understanding of the concept of viscosity and its effect on flow rate.

Author:
Yeri Park
Jennifer Haghpanah
AMPS GK-12 Program,
TeachEngineering.org
Jasmin Hume
Hidden in Plain Sight
Rating
0.0 stars

Steganography is the science and art of hiding messages in plain sight so only the sender and intended recipient know the existence of a message. Steganography can be characterized as security through obscurity. Through this lesson, students experience a portion of the engineering design process as they research steganography and steganographic methods; identify problems, criteria and constraints; brainstorm possible solutions; and generate ideas. These are the critical first steps in the engineering design process, often overlooked by students who want to get to the "doing" phases—designing, building and testing. In computer science, a thorough design phase makes program implementation much easier and more effective. Students obtain practice with a portion of the design process that may be less exciting, but is just as important as the other steps in the process.

Author:
TeachEngineering.org
IMPART RET Program, College of Information Science & Technology,
Derek Babb
How Do Things Fall?
Rating
0.0 stars

Students learn that it is incorrect to believe that heavier objects fall faster than lighter objects. By close observation of falling objects, they see that it is the amount of air resistance, not the weight of an object, which determines how quickly an object falls.

Author:
Ben Heavner
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise Carlson
TeachEngineering.org
Xochitl Zamora-Thompson
Heart to Heart
Rating
0.0 stars

Students learn about the form and function of the human heart through lecture, research and dissection. They brainstorm ideas that pertain to various heart conditions and organize these ideas into categories that help them research possible solutions. An expert in the field of cardiac valve research was interviewed for this lesson and shares his ideas with the class. Students conclude by researching various possible heart defects.

Author:
Janet Yowell
Michael Duplessis
Carleigh Samson
TeachEngineering.org
VU Bioengineering RET Program,
Latex Tubing and Hybrid Vehicles
Rating
0.0 stars

The learning of linear functions is pervasive in most algebra classrooms. Linear functions are vital in laying the foundation for understanding the concept of modeling. This unit gives students the opportunity to make use of linear models in order to make predictions based on real-world data, and see how engineers address incredible and important design challenges through the use of linear modeling. Student groups act as engineering teams by conducting experiments to collect data and model the relationship between the wall thickness of the latex tubes and their corresponding strength under pressure (to the point of explosion). Students learn to graph variables with linear relationships and use collected data from their designed experiment to make important decisions regarding the feasibility of hydraulic systems in hybrid vehicles and the necessary tube size to make it viable.

Author:
TeachEngineering.org
Erik Bowen, Carleigh Samson
VU Bioengineering RET Program,
Coordinates and the Cartesian Plane
Rating
0.0 stars

A brief refresher on the Cartesian plane includes how points are written in (x, y) format and oriented to the axes, and which directions are positive and negative. Then students learn about what it means for a relation to be a function and how to determine domain and range of a set of data points.

Author:
TeachEngineering.org
VU Bioengineering RET Program, School of Engineering,
Aubrey McKelvey