Students observe how water acts differently when placed on hydrophilic and hydrophobic …
Students observe how water acts differently when placed on hydrophilic and hydrophobic surfaces. They determine which coatings are best to cause surfaces to shed water quickly or reduce the "fogging" caused by condensation.
In this activity students will gain an understanding of how terrain affects …
In this activity students will gain an understanding of how terrain affects a watershed. Students will use maps and Google Earth to "get a picture" of the terrain within their watershed. They will use this knowledge to create an investigation of their stream which will help answer student generated questions about the connection of terrain and water systems.
This activity is a field investigation where students calculate stream discharge, develop …
This activity is a field investigation where students calculate stream discharge, develop and complete an investigation involving the stream, interpret their findings, and report to their peers.
This activity is a field investigation in which students will gather data …
This activity is a field investigation in which students will gather data from a stream to calculate the discharge. They will need to interpret their findings and examine what factors could change the discharge of a stream over time.
Carrie Leisch, Centerville Elementary School, ISD 12, Centerville, MN 55038 Based on an original activity from Macmillan/McGraw-Hill, Lesson 2 Soil, p. 315 and 319.)
This activity is a interdisciplinary field investigation where students will form observations …
This activity is a interdisciplinary field investigation where students will form observations and make calculations about stream characteristics and stream flow.
This activity is an outdoor lab in which students investigate the process …
This activity is an outdoor lab in which students investigate the process of evaporation, record their findings, and use the data to make connections to the environment around them.
In this science activity, students investigate the water cycle by testing the …
In this science activity, students investigate the water cycle by testing the water evaporated from leaves (transpiration) in a field experience. Students use elements of this information to track the water cycle through it's various stages.
In this activity students collect snow in a cup, predict how much …
In this activity students collect snow in a cup, predict how much water will be in the cup when the snow melts. Students are exposed to evaporation as the water "disappears" over time and try to stop this from happening.
Through multi-trial experiments, students are able to see and measure something that …
Through multi-trial experiments, students are able to see and measure something that is otherwise invisible to them seeing plants breathe. Student groups are given two small plants of native species and materials to enclose them after watering with colored water. After being enclosed for 5, 10 and 15 minutes, teams collect and measure the condensed water from the plants' "breathing," and then calculate the rates at which the plants breathe. A plant's breath is known as transpiration, which is the flow of water from the ground where it is taken up by roots (plant uptake) and then lost through the leaves. Students plot volume/time data for three different native plant species, determine and compare their transpiration rates to see which had the highest reaction rate and consider how a plant's unique characteristics (leaf surface area, transpiration rate) might figure into engineers' designs for neighborhood stormwater management plans.
This is one activity that is part of a larger unit on …
This is one activity that is part of a larger unit on the Hydrologic Cycle. Students place a bag around a living tree limb or bush, making sure it is sealed. The bag is left there for at least 2 hours. Water will have collected in a corner of the bag. Students explore transpiration by capturing water that plants release through their leaves.
Students are introduced to the structure, function and purpose of locks and …
Students are introduced to the structure, function and purpose of locks and dams, which involves an introduction to Pascal's law, water pressure and gravity.
In the Arizona desert, farmers depend on an ample supply of irrigation …
In the Arizona desert, farmers depend on an ample supply of irrigation to grow their crops. As climate changes, irrigation managers face a host of issues to keep the water flowing.
This stream field investigation will allow students to look at stream erosional …
This stream field investigation will allow students to look at stream erosional patterns, take measurements to determine discharge, and conduct a chemical and turbidity analysis of Garvin Brook in Stockton, MN. Based on this investigation students will create a presentation that includes a new testable question that may be carried out the following year along with a stream ecology study.
Students explore how different materials (sand, gravel, lava rock) with different water …
Students explore how different materials (sand, gravel, lava rock) with different water contents on different slopes result in landslides of different severity. They measure the severity by how far the landslide debris extends into model houses placed in the flood plain. This activity is a small-scale model of a debris chute currently being used by engineers and scientists to study landslide characteristics. Much of this activity setup is the same as for the Survive That Tsunami activity in Lesson 5 of the Natural Disasters unit.
This unit is to be taught as an extension to the FOSS …
This unit is to be taught as an extension to the FOSS WATER INVESTIGATION 1, Part 3, WATER ON A SLOPE. After learning that water flows down a slope, students will understand that this concept determines how our watersheds flow. It will also explain why some rivers (such as the Red River) appear to be flowing "up" on a map. They will then create a landform map of Minnesota accurately representing the higher elevations (our RIDGELINES) and the location of our major rivers and bodies of water. This unit can also be extended by many of the activities in the Project Wild and the MinnAqua Lesson Books.
As Public Works Director of Nogales, Arizona, Alejandro Barcenas works to ensure …
As Public Works Director of Nogales, Arizona, Alejandro Barcenas works to ensure a safe and secure water supply for the city’s 20,500 residents. His task isn’t easy: the city is located in an arid region just north of the United States–Mexico border, and its entire supply comes from groundwater.
Half of Nogales’ water comes from alluvial aquifers that are highly responsive to rainfall events. Though this convenient source of water recharges easily, it is also vulnerable to climate-related changes such as reduced precipitation and increased evaporation. The other half of the city’s groundwater comes from a lower-quality source—this water is more expensive to produce. To optimize the use of the two sources of groundwater into the future, Barcenas is contributing to the development of a modeling tool that simulates how the aquifers may change in response to climate.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.