Updating search results...

Search Resources

468 Results

View
Selected filters:
  • Geometry
What's So Special About Triangles, Anyway?
Rating
0.0 stars

In these two geometry activities students explore the properties of triangles, discover what shapes triangles can form, and investigate what shapes can form triangles. Each activity includes a student recording sheet, extension ideas, and questions for students. Cataloged separateley within this site are the Patch Tool and the related How Many Triangles Can You Construct? activity.

When Does SSA Work to Determine Triangle Congruence?
Rating
0.0 stars

The triangle congruence criteria, SSS, SAS, ASA, all require three pieces of information. It is interesting, however, that not all three pieces of information about sides and angles are sufficient to determine a triangle up to congruence. In this problem, we considered SSA. Also insufficient is AAA, which determines a triangle up to similarity. Unlike SSA, AAS is sufficient because two pairs of congruent angles force the third pair of angles to also be congruent.

Author:
Illustrative Mathematics
Which Pictures Represent One Half?
Rating
0.0 stars

In this task students see different ways of partitioning a circle and a rectangle into two or more equal shares.

Author:
Illustrative Mathematics
Why Beehive Honeycombs Have a Hexagonal Shape
Rating
0.0 stars

Beavers are generally known as the engineers of the animal world. In fact the beaver is MIT's mascot! But honeybees might be better engineers than beavers! And in this lesson involving geometry in interesting ways, you'll see why! Honeybees, over time, have optimized the design of their beehives. Mathematicians can do no better. In this lesson, students will learn how to find the areas of shapes (triangles, squares, hexagons) in terms of the radius of a circle drawn inside of these shapes. They will also learn to compare those shapes to see which one is the most efficient for beehives. This lesson also discusses the three-dimensional shape of the honeycomb and shows how bees have optimized that in multiple dimensions. During classroom breaks, students will do active learning around the mathematics involved in this engineering expertise of honeybees. Students should be conversant in geometry, and a little calculus and differential equations would help, but not mandatory.

Author:
Fatma Al-Qatani
Why Does ASA Work?
Rating
0.0 stars

The two triangles in this problem share a side so that only one rigid transformation is required to exhibit the congruence between them. In general more transformations are required and the "Why does SSS work?'' and "Why does SAS work?'' problems show how this works.

Author:
Illustrative Mathematics
Why Does SAS Work?
Rating
0.0 stars

For these particular triangles, three reflections were necessary to express how to move from ABC to DEF. Sometimes, however, one reflection or two reflections will suffice. Since any rigid motion will take triangle ABC to a congruent triangle DEF, this shows the remarkable fact that any rigid motion of the plane can be expressed as one reflection, a composition of two reflections, or a composition of three reflections.

Author:
Illustrative Mathematics
Why Does SSS Work?
Rating
0.0 stars

This particular sequence of transformations which exhibits a congruency between triangles ABC and DEF used one translation, one rotation, and one reflection. There are many other ways in which to exhibit the congruency and students and teachers are encouraged to explore the different possibilities.

Author:
Illustrative Mathematics
You've Got Triangles!
Rating
0.0 stars

Students learn about trigonometry, geometry and measurements while participating in a hands-on interaction with LEGO® MINDSTORMS® NXT technology. First they review fundamental geometrical and trigonometric concepts. Then, they estimate the height of various objects by using simple trigonometry. Students measure the height of the objects using the LEGO robot kit, giving them an opportunity to see how sensors and technology can be used to measure things on a larger scale. Students discover that they can use this method to estimate the height of buildings, trees or other tall objects. Finally, students synthesize their knowledge by applying it to solve similar problems. By activity end, students have a better grasp of trigonometry and its everyday applications.

Author:
AMPS GK-12 Program,
Raymond Le Grand
TeachEngineering.org