Updating search results...

Search Resources

104 Results

View
Selected filters:
  • engineering-design-process
The Mummified Troll: Devising a Protection Plan
Rating
0.0 stars

Students are introduced to the parameters of an engineering challenge in which their principal has asked them to devise an invisible security system to cost-effectively protect a treasured mummified troll, while still allowing for visitor viewing during the day. Students generate ideas for solving the grand challenge, first independently, then in small groups, and finally, compiled as a class.

Author:
Meghan Murphy
VU Bioengineering RET Program, School of Engineering,
Terry Carter
My Moon Colony
Rating
0.0 stars

Students are introduced to the futuristic concept of the moon as a place people can inhabit. They brainstorm what people would need to live on the moon and then design a fantastic Moon colony and decide how to power it. Students use the engineering design process, which includes researching various types of energy sources and evaluating which would be best for their moon colonies.

Author:
Janet Yowell
Integrated Teaching and Learning Program,
Jessica Butterfield
Jessica Todd
Brian Kay
Sam Semakula
Karen King
Naked Egg Drop
Rating
0.0 stars

Student pairs experience the iterative engineering design process as they design, build, test and improve catching devices to prevent a "naked" egg from breaking when dropped from increasing heights. To support their design work, they learn about materials properties, energy types and conservation of energy. Acting as engineering teams, during the activity and competition they are responsible for design and construction planning within project constraints, including making engineering modifications for improvement. They carefully consider material choices to balance potentially competing requirements (such as impact-absorbing and low-cost) in the design of their prototypes. They also experience a real-world transfer of energy as the elevated egg's gravitational potential energy turns into kinetic energy as it falls and further dissipates into other forms upon impact. Pre- and post-activity assessments and a scoring rubric are provided. The activity scales up to district or regional egg drop competition scale. As an alternative to a ladder, detailed instructions are provided for creating a 10-foot-tall egg dropper rig.

Author:
RESOURCE GK-12 Program,
Lauren Jabusch
Navigating a Maze
Rating
0.0 stars

Using new knowledge acquired in the associated lesson, students program LEGO MINDSTORMS(TM) NXT robots to go through a maze using movement blocks. The maze is created on the classroom floor with cardboard boxes as its walls. Student pairs follow the steps of the engineering design process to brainstorm, design and test programs to success. Through this activity, students understand how to create and test a basic program. A PowerPoint® presentation, pre/post quizzes and worksheet are provided.

Author:
GK-12 Program, Computational Neurobiology Center,
Riaz Helfer, Pranit Samarth, Satish S. Nair
Obi-Wan Adobe: Engineering for Strength
Rating
0.0 stars

Students conduct an experiment to determine how varying the composition of a construction material affects its strength. They make several adobe bricks with differing percentages of sand, soil, fibrous material and water. They test the bricks for strength by dropping them onto a concrete surface from progressively greater heights. Students graph the experiment results and use what they learn to design their own special mix that maximizes the bricks' strength. During the course of the experiment, students learn about variables (independent, dependent, control) and the steps of the engineering design process.

Author:
Stephanie Rivale
Jacob Crosby
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Off-Road Wheelchair Challenge
Rating
0.0 stars

Students further their understanding of the engineering design process (EDP) while being introduced to assistive technology devices and biomedical engineering. They are given a fictional client statement and are tasked to follow the steps of the EDP to design and build small-scale, off-road wheelchair prototypes. As part of the EDP, students identify appropriate materials and demonstrate two methods of representing solutions to their design problem (scale drawings and simple scale models). They test the scale model off-road wheelchairs using spring scales to pull the prototypes across three different simulated off-road surfaces.

Author:
Jared R. Quinn
Kristen Billiar
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program, Department of Biomedical Engineering,
Terri Camesano
Paper Drop Design Competition
Rating
0.0 stars

Using paper, paper clips and tape, student teams design flying/falling devices to stay in the air as long as possible and land as close as possible to a given target. Student teams use the steps of the engineering design process to guide them through the initial conception, evaluation, testing and re-design stages. The activity culminates with a classroom competition and scoring to evaluate how each team's design performed.

Author:
Howard Kimmel
John Carpinelli
Ronald Rockland
Center for Pre-College Programs,
Park It!
Rating
0.0 stars

The difference between an architect and an engineer is sometimes confusing because their roles in building design can be similar. Students experience a bit of both professions by following a set of requirements and meeting given constraints as they create a model parking garage. They experience the engineering design process first-hand as they design, build and test their models. They draw a blueprint for their design, select the construction materials and budget their expenditures. They also test their structures for strength and find their maximum loads.

Author:
Janet Yowell
Abigail Watrous
Melissa Straten
Katherine Beggs
Denali Lander
Integrated Teaching and Learning Program and Laboratory,
Sara Stemler
Penny Perfect Properties (Solid-Liquid Interactions)
Rating
0.0 stars

Students investigate the property dependence between liquid and solid interfaces and determine observable differences in how liquids react to different solid surfaces. They compare copper pennies and plastic "coins" as the two test surfaces. Using an eye dropper to deliver various fluids onto the surfaces, students determine the volume and mass of a liquid that can sit on the surface. They use rulers, scales, equations of volume and area, and other methods of approximation and observation, to make their own graphical interpretations of trends. They apply what they learned to design two super-surfaces (from provided surface treatment materials) that arecapable of holding the most liquid by volume and by mass. Cost of materials is a parameter in their design decisions.

Author:
Courtney Herring (WSU Gene and Linda Voiland School of Chemical Engineering and Bioengineering)
CREAM GK-12 Program, Engineering Education Research Center, College of Engineering and Architecture,
Pharmaceutical Research Design Problem
Rating
0.0 stars

Through this lesson and its associated activity, students explore the role of biomedical engineers working for pharmaceutical companies. First, students gain background knowledge about what biomedical engineers do, how to become a biomedical engineer, and the steps of the engineering design process. The goal is to introduce biomedical engineering as medical problem solving as well as highlight the importance of maintaining normal body chemistry. Students participate in the research phase of the design process as it relates to improving the design of a new prescription medication. During the research phase, engineers learn about topics by reading scholarly articles written by others, and students experience this process. Students draw on their research findings to participate in discussion and draw conclusions about the impact of medications on the human body.

Author:
TeachEngineering.org
Bio-Inspired Technology and Systems (BITS) RET,
Angela D. Kolonich
Portable Wheelchair Ramp Challenge
Rating
0.0 stars

Students follow the steps of the engineering design process while learning more about assistive devices and biomedical engineering applied to basic structural engineering concepts. Their engineering challenge is to design, build and test small-scale portable wheelchair ramp prototypes for fictional clients. They identify suitable materials and demonstrate two methods of representing design solutions (scale drawings and simple models or classroom prototypes). Students test the ramp prototypes using a weighted bucket; successful prototypes meet all the student-generated design requirements, including support of a predetermined weight.

Author:
Jared R. Quinn
Kristen Billiar
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program, Department of Biomedical Engineering,
Terri Camesano
Problem Solve Your School
Rating
0.0 stars

Students apply what they have learned about the engineering design process to a real-life problem that affects them and/or their school. They chose a problem as a group, and then follow the engineering design process to come up with and test their design solution. This activity teaches students how to use the engineering design process while improving something in the school environment that matters to them. By performing each step of the design process, students can experience what it is like to be an engineer.

Author:
Jackie Sullivan
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Megan Podlogar
Prosthetic Party
Rating
0.0 stars

Student teams investigate biomedical engineering and the technology of prosthetics. Students create a model prosthetic lower leg using various materials. Each team demonstrate its prosthesis' strength and consider its pros and cons, giving insight into the characteristics and materials biomedical engineers consider in designing artificial limbs.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Megan Podlogar
Denise W. Carlson
Protect That Pill
Rating
0.0 stars

Students reinforce their knowledge of the different parts of the digestive system and explore the concept of simulation by developing a pill coating that can withstand the churning actions and acidic environment found in the stomach. Teams test the coating durability by using a clear soda to simulate stomach acid.

Author:
Todd Curtis
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Jacob Crosby
Protecting Our City with Levees
Rating
0.0 stars

Students design and build their own model levees. Acting as engineers for their city, teams create sturdy barriers to prevent water from flooding a city in the event of a hurricane.

Author:
Janet Yowell
Integrated Teaching and Learning Program,
Denise W. Carlson
Katherine Beggs
Brian Kay
Abigail Watrous
Karen King
Ready, Set, Escape
Rating
0.0 stars

Students are asked to design simple yet accurate timing devices using limited supplies. The challenge is to create a device that measures out a time period of exactly three minutes in order to enable a hypothetical prison escape. Student groups brainstorm ideas using the different materials provided. They observe and explain the effects of conservation of energy.

Author:
K-12 Outreach Office,
Right on Target: Catapult Game
Rating
0.0 stars

Students experience the engineering design process as they design and build accurate and precise catapults using common materials. They use their catapults to participate in a game in which they launch Ping-Pong balls to attempt to hit various targets.

Author:
William Surles
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Jonathan McNeil
Carleigh Samson
Jake Crosby
Robot Design Challenges
Rating
0.0 stars

Through the two lessons and five activities in this unit, students' knowledge of sensors and motors is integrated with programming logic as they perform complex tasks using LEGO MINDSTORMS(TM) NXT robots and software. First, students are introduced to the discipline of engineering and "design" in general terms. Then in five challenge activities, student teams program LEGO robots to travel a maze, go as fast/slow as possible, push another robot, follow a line, and play soccer with other robots. This fifth unit in the series builds on the previous units and reinforces the theme of the human body as a system with sensors performing useful functions, not unlike robots. Through these design challenges, students become familiar with the steps of the engineering design process and come to understand how science, math and engineering including computer programming are used to tackle design challenges and help people solve real problems. PowerPoint® presentations, quizzes and worksheets are provided throughout the unit.

Author:
Sachin Nair, Riaz Helfer, Pranit Samarth, Satish S. Nair
GK-12 Program,
Sensory Toys Make Sense!
Rating
0.0 stars

Students design and create sensory integration toys for young children with developmental disabilities an engineering challenge that combines the topics of biomedical engineering, engineering design and human senses. Students learn the steps of the engineering design process (EDP) and how to use it for problem solving. After learning about the human sensory system, student teams apply the EDP to their sensory toy projects. They design and make plans within given project constraints, choose materials, fabricate prototypes, evaluate the prototypes, and give and receive peer feedback. Students experience the entire design-build-test-redesign process and conclude with a class presentation in which they summarize their experiences with the EDP steps and their sensory toy project development.

Author:
Thomas Oliva, Terri Camesano, Kristen Billiar
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program, Department of Biomedical Engineering, Worcester Polytechnic Institute,
Service-Based Engineering Design Projects
Rating
0.0 stars

This unit describes a general approach to guiding students to complete service-based engineering design projects, with specific examples provided in detail as associated activities. With your class, brainstorm ideas for engineering designs that benefit your community or a specific person in your community. Then, guided by the steps of the engineering design process, have students research to understand background science and math, meet their client to understand the problem, and create, test and improve prototype devices. Note that service-based projects often take more time to prepare, especially if you arrange for a real client. However, the authors notice that students of both genders and all ethnicities tend to respond with more enthusiasm and interest to altruistic projects.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Eszter Horanyi
Alison Pienciak