Students are introduced to a challenge question. Towards answering the question, they …
Students are introduced to a challenge question. Towards answering the question, they generate ideas for what they need to know about medicines and how they move through our bodies, watch a few short videos to gain multiple perspectives, and then learn lecture material to obtain a basic understanding of how antibiotics kill bacteria in the human body. They learn why different forms of medicine (pill, liquid or shot) get into the blood stream at different speeds.
In this lesson, students measure the dimensions of their own fist plus …
In this lesson, students measure the dimensions of their own fist plus the fists of some other people who are older to approximate the size of each person's heart. Next they use construction paper to make a model of their own heart.
This lesson highlights the similarities between human sensors and their engineering counterparts. …
This lesson highlights the similarities between human sensors and their engineering counterparts. Taking this approach enables students to view the human body as a system, that is, from the perspective of an engineer. Humans have recreated most human sensors in robots – eyes, ears and sensors for temperature, touch and smell. The lesson inculdes a PowerPoint file that is programmed to run a Jeopardy-style game as a fun assessment tool.
Through six lesson/activity sets, students learn about the functioning of sensors, both …
Through six lesson/activity sets, students learn about the functioning of sensors, both human and robotic. In the activities, student groups use LEGO MINDSTORMS(TM) NXT robots and components to study human senses (sight, hearing, smell, taste, touch) in more detail than in previous units in the series. They also learn about the human made rotation, touch, sound, light and ultrasonic sensors. "Stimulus-sensor-coordinator-effector-response" pathways are used to describe the processes as well as similarities between human/animal and robotic equivalent sensory systems. The important concept of sensors converting/transducing signals is emphasized. Through assorted engineering design challenges, students program the LEGO robots to respond to input from various LEGO sensors. The overall framework reinforces the theme of the human body as a system with sensors that is, from an engineering perspective. PowerPoint® presentations, quizzes and worksheets are provided throughout the unit.
Students learn more about how light sensors work, reinforcing their similarities to …
Students learn more about how light sensors work, reinforcing their similarities to the human sense of sight. They look at the light sensing process incoming light converted to electrical signals sent to the brain through the human eye anatomy as well as human-made electrical light sensors. A mini-activity, which uses LEGO MINDSTORMS(TM) NXT intelligent bricks and light sensors gives students a chance to investigate how light sensors function in preparation for the associated activity involving the light sensors and taskbots. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, and details about the LEGO light sensor, including its two modes of gathering data and what its numerical value readings mean. Students take pre/post quizzes and watch a short online video. This lesson and its associated activity enable students to gain a deeper understanding of how robots can take sensor input and use it to make decisions via programming.
Students learn about how sound sensors work, reinforcing their similarities to the …
Students learn about how sound sensors work, reinforcing their similarities to the human sense of hearing. They look at the hearing process sound waves converted to electrical signals sent to the brain through human ear anatomy as well as sound sensors. A mini-activity, which uses LEGO MINDSTORMS(TM) NXT intelligent bricks and sound sensors gives students a chance to experiment with the sound sensors in preparation for the associated activity involving the sound sensors and taskbots. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, the unit of decibels, and details about the LEGO sound sensor, including how readings are displayed and its three modes of programming sound input. Students take pre/post quizzes and watch a short online video. This lesson and its associated activity enable students to appreciate how robots can take sensor input and use it to make decisions to via programming.
Students learn about how touch sensors work, while reinforcing their similarities to …
Students learn about how touch sensors work, while reinforcing their similarities to the human sense of touch. They look at human senses and their electronic imitators, with special focus on the nervous system, skin and touch sensors. A PowerPoint® presentation explains stimulus-to-response pathways, how touch sensors are made and work, and then gives students a chance to handle and get familiar with the LEGO touch sensor, including programming LEGO MINDSTORMS(TM) NXT robots to use touch sensor input to play music. Students take pre/post quizzes and watch a short online video. The mini-activities prepare students for the associated activity. This lesson and its associated activity enables students to appreciate how robots can take input from sensors, and use that to make decisions to move.
Students learn about how ultrasonic sensors work, reinforcing the connection between this …
Students learn about how ultrasonic sensors work, reinforcing the connection between this sensor and how humans, bats and dolphins estimate distance. They learn the echolocation process sound waves transmitted, bounced back and received, with the time difference used to calculate the distance of objects. Two mini-activities, which use LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors, give students a chance to experiment with ultrasonic sensors in preparation for the associated activity. A PowerPoint® presentation explains stimulus-to-response pathways, sensor fundamentals, and details about the LEGO ultrasonic sensor. Pre/post quizzes are provided. This lesson and its associated activity enable students to gain a deeper understanding of how robots can take sensor input and use it to make decisions via programming.
Tony Wyss-Coray studies the impact of aging on the human body and …
Tony Wyss-Coray studies the impact of aging on the human body and brain. In this eye-opening talk, he shares new research from his Stanford lab and other teams which shows that a solution for some of the less great aspects of old age might actually lie within us all.
This course will provide the student with an overview of the body …
This course will provide the student with an overview of the body from a systemic perspective. Each unit will focus on one system, or network of organs that work together to perform a particular function. At the end of this course, the student will review the ways in which the systems overlap, as well as discuss current body imaging techniques and learn how to correctly interpret the images in order to put our newly-gained anatomical knowledge to practical use. Upon successful completion of this course, the student will be able to: identify gross and microscopic anatomy and explain interactions of the major organ systems in the human body; perform and analyze experiments in human anatomy (virtual); use language necessary to appropriately describe human anatomy; explain and identify how structure and function complement each other; describe how anatomy relates to medical situations in healthy and diseased states. (Biology 302)
In this lab, the student will review the anatomy and histology of …
In this lab, the student will review the anatomy and histology of the organs by using images of models, microscopic slides, and videos on cat and sheep dissections. The student will then be asked to assess his or her knowledge, which eventually can be put to practical or experimental use. Upon successful completion of this lab supplement, students will be able to: use anatomical terminology correctly in the laboratory; using a compound light microscope, identify different tissues and describe a human organ where that tissue can be found; describe the major features and functions of human skin; identify and name human bones and their major features and differentiate, microscopically and grossly, between compact and spongy bone; name and describe the functions of the human brain's major structures; describe the anatomical and functional differences between the dorsal and ventral roots of spinal nerves and the dorsal and ventral horns of the spinal cord's grey matter; describe the structure of an intervertebral disc; identify, microscopically and grossly, the differences between the three types of muscle and describe the respective structures and locations of different muscle tissues; identify and name the structures of the human eye and the human ear; describe the major similarities and differences in the structure of an artery and a vein; describe the flow of blood through the heart and identify all major vessels, chambers, and valves; identify and name, histologically and anatomically, the major components of the respiratory system, the digestive system, and the male and female urinary systems; identify and name, histologically and anatomically, the major components of male and female reproductive systems. (Biology 302 Laboratory)
Students are provided with a rigorous background in human "sensors" (including information …
Students are provided with a rigorous background in human "sensors" (including information on the main five senses, sensor anatomies, and nervous system process) and their engineering equivalents, setting the stage for three associated activities involving sound sensors on LEGO® robots. As they learn how robots receive input from sensors, transmit signals and make decisions about how to move, students reinforce their understanding of the human body's sensory process.
Gait analysis is the study of human motion that can be utilized …
Gait analysis is the study of human motion that can be utilized as biometric information or identification, for medical diagnostics or for comparative biomechanics. In this activity, students observe walking human subjects and then discuss parameters that could be used to characterize walking gaits. They use accelerometers to collect and graph acceleration vs. time data that can help in gait analysisâall part of practicing the engineering data analysis process. Students complete this activity before learning the material presented in the associated lesson.
Students continue the research begun in the associated lesson as if they …
Students continue the research begun in the associated lesson as if they were biomedical engineers working for a pharmaceutical company. Groups each perform a simple chemical reaction (to precipitate solid calcium out of solution) to observe what may occur when Osteopontin levels drop in the body. With this additional research, students determine potential health complications that might arise from a new drug that could reduce inflammatory pain in many patients, improving their quality of life. The goal of this activity is to illustrate biomedical engineering as medical problem solving, as well as emphasize the importance of maintaining normal body chemistry.
Acting as if they are biomedical engineers, students design and print 3D …
Acting as if they are biomedical engineers, students design and print 3D prototypes of pressure sensors that measure the pressure of the eyes of people diagnosed with glaucoma. After completing the tasks within the associated lesson, students conduct research on pressure gauges, apply their understanding of radio-frequency identification (RFID) technology and its components, iterate their designs to make improvements, and use 3D software to design and print 3D prototypes. After successful 3D printing, teams present their models to their peers. If a 3D printer is not available, use alternate fabrication materials such as modeling clay, or end the activity once the designs are complete.
Short Description: This activity is a classroom investigation of human joints. Students …
Short Description: This activity is a classroom investigation of human joints. Students will identify joints and use their science notebooks to record their findings using drawings and words.
Students learn how crystallization and inhibition occur by examining calcium oxalate crystals …
Students learn how crystallization and inhibition occur by examining calcium oxalate crystals with and without inhibitors that are capable of altering crystallization. Kidney stones are composed of calcium oxalate crystals, and engineers and doctors experiment with these crystals to determine how growth is affected when a potential drug is introduced. Students play the role of engineers by trying to determine which inhibitor would be the best for blocking crystallization.
Learners use two mirrors to explore how images of images of images …
Learners use two mirrors to explore how images of images of images can repeat forever. This resource includes a light-ray diagram to help learners understand what they are seeing -- images appear to be grouped in pairs with a front side always facing a front side and a back side always facing a back side. Learners can assist in assembling the Infinity Mirror or use one that has been pre-assembled.
Students learn about the unique challenges astronauts face while eating in outer …
Students learn about the unique challenges astronauts face while eating in outer space. They explore different food choices and food packaging. Students learn about the engineering design process, and then, as NASA engineering teams, they design and build original model devices to help astronauts eat in a microgravity environment --- their own creative devices for food storage and meal preparation.
In this activity about light and perception, learners create pictures in thin …
In this activity about light and perception, learners create pictures in thin air. Using a simple set up of a slide projector, slide, moveable screen or poster board, and a "wand", learners investigate how we see projected images such as those from movies and television. Use this activity to help learners understand concepts associated with light and optics including persistence of vision, reflection, and map projection.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.