Updating search results...

Search Resources

50 Results

View
Selected filters:
  • atmosphere
Air Has Matter
Rating
0.0 stars

This is a series of activities demonstrating that air has mass, takes up space, and can exert a force on objects enough to lift them.

Author:
Caroline Sorensen
Sorensen, Caroline
Air - Is It Really There?
Rating
0.0 stars

By watching and performing several simple experiments, students develop an understanding of the properties of air: it has mass, it takes up space, it can move, it exerts pressure, it can do work.

Author:
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Integrated Teaching and Learning Program,
Amy Kolenbrander
Denise Carlson
Daria Kotys-Schwartz
Air Pressure
Rating
0.0 stars

Air pressure is pushing on us all the time although we do not usually notice it. In this activity, students learn about the units of pressure and get a sense of just how much air pressure is pushing on them.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Geoffrey Hill
Tom Rutkowski
Alex Conner
Air- She's So heavy!
Rating
0.0 stars

This is an inquiry activity that relies of pervious understanding of balancing and weighing to introduce a properties of air.

Air Under Pressure
Rating
0.0 stars

Students are introduced to air masses, with an emphasis on the differences between and characteristics of high- versus low-pressure air systems. Students also hear about weather forecasting instrumentation and how engineers work to improve these instruments for atmospheric measurements on Earth and in space.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Glen Sirakavit
Marissa Forbes
Atmosphere, Ocean and Climate Dynamics, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"This undergraduate class is designed to introduce students to the physics that govern the circulation of the ocean and atmosphere. The focus of the course is on the processes that control the climate of the planet.AcknowledgmentsProf. Ferrari wishes to acknowledge that this course was originally designed and taught by Prof. John Marshall."

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Ferrari, Raffaele
Date Added:
01/01/2008
The Atmosphere, the Ocean, and Environmental Change
Rating
0.0 stars

This course explores the physical processes that control Earth's atmosphere, ocean, and climate. Quantitative methods for constructing mass and energy budgets. Topics include clouds, rain, severe storms, regional climate, the ozone layer, air pollution, ocean currents and productivity, the seasons, El Ni–o, the history of Earth's climate, global warming, energy, and water resources.

Author:
Ronald B. Smith
Battling for Oxygen
Rating
0.0 stars

Using gumdrops and toothpicks, students conduct a large-group, interactive ozone depletion model. Students explore the dynamic and competing upper atmospheric roles of the protective ozone layer, the sun's UV radiation and harmful human-made CFCs (chlorofluorocarbons).

Author:
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Integrated Teaching and Learning Program,
Tom Rutkowski
Amy Kolenbrander
Denise Carlson
Tyman Stephens
Blue Sky
Rating
0.0 stars

In this optics activity, learners explore why the sky is blue and the sunset is red, using a simple setup comprising a transparent plastic box, water, and powdered milk. Learners use a flashlight to shine a beam of light through the container. Learners look at the beam from the side of the container and then from the end of the tank, and compare the colors that they see. Learners also examine a narrower beam of light. Use this activity to introduce learners to the light spectrum, wavelengths, frequency, scattering, and how all this effects what we see in the sky at different times of the day.

Author:
The Exploratorium
California Department of Education
NEC Foundation of America
National Science Foundation
Bubble Suspension
Rating
0.0 stars

In this activity, learners observe as soap bubbles float on a cushion of carbon dioxide gas. Learners blow bubbles into an aquarium filled with a slab of dry ice. Learners will be amazed as the bubbles hover on the denser layer of carbon dioxide gas, then begin to expand and sink before freezing on the dry ice. Use this activity to discuss sublimation, density, and osmosis as well as principles of buoyancy, semipermeability, and interference.

Author:
The Exploratorium
Can You Catch the Water?
Rating
0.0 stars

Students construct three-dimensional models of water catchment basins using everyday objects to form hills, mountains, valleys and water sources. They experiment to see where rain travels and collects, and survey water pathways to see how they can be altered by natural and human activities. Students discuss how engineers design structures that impact water collection, as well as systems that clean and distribute water.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Jay Shah
Carbon Cycles
Rating
0.0 stars

Students are introduced to the concept of energy cycles by learning about the carbon cycle. They will learn how carbon atoms travel through the geological (ancient) carbon cycle and the biological/physical carbon cycle. Students will consider how human activities have disturbed the carbon cycle by emitting carbon dioxide into the atmosphere. They will discuss how engineers and scientists are working to reduce carbon dioxide emissions. Lastly, students will consider how they can help the world through simple energy conservation measures.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Lauren Cooper
Dinosaur Breath
Rating
0.0 stars

Through discussion and hands-on experimentation, students learn about the geological (ancient) carbon cycle. They investigate the role of dinosaurs in the carbon cycle and the eventual storage of carbon in the form of chalk. Students discover how the carbon cycle has been occurring for millions of years and is necessary for life on Earth. Finally, they may extend their knowledge to the concept of global warming and how engineers are working to understand the carbon cycle and reduce harmful CO2 emissions.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Lauren Cooper
Distorted Disturbances
Rating
0.0 stars

Students pass around and distort messages written on index cards to learn how we use signals from GPS occultations to study the atmosphere. The cards represent information sent from GPS satellites being distorted as they pass through different locations in the Earth's atmosphere and reach other satellites. Analyzing GPS occultations enables better global weather forecasting, storm tracking and climate change monitoring.

Author:
Jonah Kisesi
Integrated Teaching and Learning Program,
Marissa H. Forbes
Penina Axelrad
Dress for Success
Rating
0.0 stars

In this design activity, students investigate materials engineering as it applies to weather and clothing. Teams design and analyze different combinations of materials for effectiveness in specific weather conditions. Analysis includes simulation of temperature, wind and wetness elements, as well as the functionality and durability of final prototypes.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Glen Sirakavit
Marissa Forbes
Dynamics of the Atmosphere, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course begins with a study of the role of dynamics in the general physics of the atmosphere, the consideration of the differences between modeling and approximation, and the observed large-scale phenomenology of the atmosphere. Only then are the basic equations derived in rigorous manner. The equations are then applied to important problems and methodologies in meteorology and climate, with discussions of the history of the topics where appropriate. Problems include the Hadley circulation and its role in the general circulation, atmospheric waves including gravity and Rossby waves and their interaction with the mean flow, with specific applications to the stratospheric quasi-biennial oscillation, tides, the super-rotation of Venus' atmosphere, the generation of atmospheric turbulence, and stationary waves among other problems. The quasi-geostrophic approximation is derived, and the resulting equations are used to examine the hydrodynamic stability of the circulation with applications ranging from convective adjustment to climate.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Lindzen, Richard
Date Added:
01/01/2008
Earth Systems Q2
Rating
0.0 stars

The theme for Earth Systems Science is systems. The "Benchmarks" in the Earth Systems Science Core emphasize "systems" as an organizing concept to understand life on Earth, geological change, and the interaction of atmosphere, hydrosphere, and biosphere. Earth Systems Science provides students with an understanding of how the parts of a system interact. The concept of matter cycling and energy flowing is used to help understand how systems on planet Earth are interrelated. Throughout this course students experience science as a way of knowing based on making observations, gathering data, designing experiments, making inferences, drawing conclusions, and communicating results. Students see that the science concepts apply to their lives and their society. This course will provide students with science skills to make informed and responsible decisions. Students will learn how to explain cosmic and global phenomena in terms of interactions of energy, matter, and life. These explorations range from the realization that all elements heavier than helium were made in stars to an understanding of how rain influences a desert ecosystem.

Author:
Individual Authors
Earth Systems Q4
Rating
0.0 stars

The theme for Earth Systems Science is systems. The "Benchmarks" in the Earth Systems Science Core emphasize "systems" as an organizing concept to understand life on Earth, geological change, and the interaction of atmosphere, hydrosphere, and biosphere. Earth Systems Science provides students with an understanding of how the parts of a system interact. The concept of matter cycling and energy flowing is used to help understand how systems on planet Earth are interrelated. Throughout this course students experience science as a way of knowing based on making observations, gathering data, designing experiments, making inferences, drawing conclusions, and communicating results. Students see that the science concepts apply to their lives and their society. This course will provide students with science skills to make informed and responsible decisions. Students will learn how to explain cosmic and global phenomena in terms of interactions of energy, matter, and life. These explorations range from the realization that all elements heavier than helium were made in stars to an understanding of how rain influences a desert ecosystem.

Ecology I: The Earth System, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" We will cover fundamentals of ecology, considering Earth as an integrated dynamic system. Topics include coevolution of the biosphere, geosphere, atmosphere and oceans; photosynthesis and respiration; the hydrologic, carbon and nitrogen cycles. We will examine the flow of energy and materials through ecosystems; regulation of the distribution and abundance of organisms; structure and function of ecosystems, including evolution and natural selection; metabolic diversity; productivity; trophic dynamics; models of population growth, competition, mutualism and predation. This course is designated as Communication-Intensive; instruction and practice in oral and written communication provided. Biology is a recommended prerequisite."

Subject:
Ecology
Life Science
Material Type:
Full Course
Textbook
Author:
Chisholm, Penny
DeLong, Edward
Date Added:
01/01/2009
Engineering and the Human Body
Rating
0.0 stars

This unit covers the broad spectrum of topics that make-up our very amazing human body. Students are introduced to the space environment and learn the major differences between the environment on Earth and that of outer space. The engineering challenges that arise because of these discrepancies are also discussed. Then, students dive into the different components that make up the human body: muscles, bones and joints, the digestive and circulatory systems, the nervous and endocrine systems, the urinary system, the respiratory system, and finally the immune system. Students learn about the different types of muscles in the human body and the effects of microgravity on muscles. Also, they learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. In the lessons on the digestive, circulatory, nervous and endocrine systems, students learn how these vital system work and the challenges faced by astronauts whose systems are impacted by spaceflight. And lastly, advances in engineering technology are discussed through the lessons on the urinary, respiratory and immune systems while students learn how these systems work with all the other body components to help keep the human body healthy.

Author:
Integrated Teaching and Learning Program,