In this activity about light and perception, learners discover how a flash …
In this activity about light and perception, learners discover how a flash of light can create a lingering image called an "afterimage" on the retina of the eye. Learners will be surprised when they continue to see an image of a bright object after staring at it and looking away. Use this activity to introduce learners to principles of optics and perception as well as to explain why the full moon often appears larger when it is on the horizon than when it is overhead. This lesson guide also includes a few extensions like how to take "afterimage photographs."
Students examine the structure and function of the human eye, learning some …
Students examine the structure and function of the human eye, learning some amazing features about our eyes, which provide us with sight and an understanding of our surroundings. Students also learn about some common eye problems and the biomedical devices and medical procedures that resolve or help to lessen the effects of these vision deficiencies, including vision correction surgery.
In this optics/mathematics activity, learners use two hinged mirrors to create a …
In this optics/mathematics activity, learners use two hinged mirrors to create a kaleidoscope that shows multiple images of an object. Learners discover that the number of images reflected in the mirrors depends on the angle between the mirrors. Learners also observe that when they set the hinged mirrors on top of a third mirror, they create a reflector that always sends light back in the direction from which it came. Use this activity to introduce basic principles of light and optics including angle of reflection and angle of incidence.
Students are introduced to the Robotics Peripheral Vision Grand Challenge question. They …
Students are introduced to the Robotics Peripheral Vision Grand Challenge question. They are asked to write journal responses to the question and brainstorm what information they require to answer the question. Their ideas are shared with the class and recorded. Then, students share their ideas with each other and brainstorm any additional ideas. Next, students draw a basis for the average peripheral vision of humans and then compare that range to the range of two different focal lengths in a camera. Through the associated activity provides, students see the differences between human and computer vision.
In this activity about light and perception, learners create pictures in thin …
In this activity about light and perception, learners create pictures in thin air. Using a simple set up of a slide projector, slide, moveable screen or poster board, and a "wand", learners investigate how we see projected images such as those from movies and television. Use this activity to help learners understand concepts associated with light and optics including persistence of vision, reflection, and map projection.
This lesson describes the function and components of the human nervous system. …
This lesson describes the function and components of the human nervous system. It helps students understand the purpose of our brain, spinal cord, nerves and the five senses. How the nervous system is affected during spaceflight is also discussed in this lesson.
Vision is the primary sense of many animals and much is known …
Vision is the primary sense of many animals and much is known about how vision is processed in the mammalian nervous system. One distinct property of the primary visual cortex is a highly organized pattern of sensitivity to location and orientation of objects in the visual field. But how did we learn this? An important tool is the ability to design experiments to map out the structure and response of a system such as vision. In this activity, students learn about the visual system and then conduct a model experiment to map the visual field response of a Panoptes robot. (In Greek mythology, Argus Panoptes was the "all-seeing" watchman giant with 100 eyes.) A simple activity modification enables a true black box experiment, in which students do not directly observe how the visual system is configured, and must match the input to the output in order to reconstruct the unseen system inside the box.
In this activity related to light and perception, learners use a pinhole …
In this activity related to light and perception, learners use a pinhole in an index card as a magnifying glass to help their eye focus on a nearby object. Learners will also discover that because this magnifier limits the amount of light that reaches their eye from the object, the pinhole makes the object appear dimmer. Learners are encouraged to explore using pins and needles with different diameters to make different-sized holes in index cards to see how this affects the image. They can also try forming a pinhole by curling their index finger.
In this activity, learners explore their eye pupils and how they change. …
In this activity, learners explore their eye pupils and how they change. Learners use a magnifying glass, mirror, and flashlight to observe how their pupil changes size in response to changes in lighting. Learners also experiment to determine how light shining in one eye affects the size of the pupil in their other eye. This resource guide includes background information about pupils and why they change as well as information related to emotional stimuli, involuntary reflexes, and photography.
In this quick optics activity, learners use a dim point of light …
In this quick optics activity, learners use a dim point of light (a disassembled Mini MagLite and dowel set-up) to cast a shadow of the blood supply in their retina onto the retina itself. This allows learners to see the blood supply of their retina and even their blind spot. Learners are encouraged to wear eye protection.
Students learn about glaucoma its causes, how it affects individuals and how …
Students learn about glaucoma its causes, how it affects individuals and how biomedical engineers can identify factors that trigger or cause this eye disease, specifically the increase of pressure in the eye. Students also learn how RFID technologies transfer energy through waves and how engineers apply their scientific understanding of waves, energy and sensors to develop devices that measure the pressure in the eyes of people with glaucoma. Students conclude by sketching their own designs for a pressure-measuring eye device, preparing them to conduct the associated activity in which they revise, prototype and evaluate their device designs made tangible with a 3D printer.
In this service-learning engineering project, students follow the steps of the engineering …
In this service-learning engineering project, students follow the steps of the engineering design process to design a hearing testing device. More specifically, they design a prototype machine that can be used to test the peripheral vision of partially-blind, pre-verbal children. Students learn about the basics of vision and vision loss. They also learn how a peripheral vision tester for adults works (by testing the static peripheral vision in the four quadrants of the visual field with four controllable lights in specific locations). Then they modify the idea of the adult peripheral vision tester to make it usable for testing young children. The class designs and builds one complete prototype, working in sub-groups of four or five students each to build sub-components of the project design.
In this activity about light and refraction, learners make a lens and …
In this activity about light and refraction, learners make a lens and magnifying glass by filling a bowl with water. Learners explore why the lens inverts images and also reverses the motion of images. Use this activity to introduce learners to basic principles of light and lenses. Activity includes light-ray diagram to explain how image is formed.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.