Updating search results...

Search Resources

622 Results

View
Selected filters:
  • physics
An Electrical Storm on the Horizon: Can Technology Stimulate Reasoned Debate on Waste Containment
Rating
0.0 stars

In this fictional case study, the state of Oklahoma has profited by giving incentives for companies to build power plants in rural areas of the state. The "scrubbing" systems used to minimize air pollution create potentially hazardous solid waste.To contain this waste, an impoundment facility has been built on unsuitable land from which water-soluble toxins can leach into groundwater. Student teams design a prototype sensor capable of measuring dissolved oxygen and fluorescein dye in water in order to analyze the runoff from the impoundment facility for toxins. The case was developed for an undergraduate laboratory course in photonics for junior- and senior-level students.

Author:
Alan Cheville
Electromagnetic Fields and Energy, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"Published in 1989 by Prentice-Hall, this book is a useful resource for educators and self-learners alike. The text is aimed at those who have seen Maxwell's equations in integral and differential form and who have been exposed to some integral theorems and differential operators. A hypertext version of this textbook can be found here. An accompanying set of video demonstrations is available below. These video demonstrations convey electromagnetism concepts. The demonstrations are related to topics covered in the textbook. They were prepared by Markus Zahn, James R. Melcher, and Manuel L. Silva and were produced by the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology. The purpose of these demonstrations is to make mathematical analysis of electromagnetism take on physical meaning. Based on relatively simple configurations and arrangements of equipment, they make a direct connection between what has been analytically derived and what is observed. They permit the student to observe physically what has been described symbolically. Often presented with a plot of theoretical predictions that are compared to measured data, these demonstrations give the opportunity to test the range of validity of the theory and present a quantitative approach to dealing with the physical world. The short form of these videos contains the demonstrations only. The long form also presents theory, diagrams, and calculations in support of the demonstrations. These videos are used in the courses 6.013J/ESD.013J and 6.641. Technical Requirements:Special software is required to use some of the files in this course: .mp4, .rm."

Subject:
Applied Science
Computer Science
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Silva, Manuel L.
Zahn, Markus
Date Added:
01/01/2008
Electromagnetic Theory, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Basic principles of electromagnetism: experimental basis, electrostatics, magnetic fields of steady currents, motional e.m.f. and electromagnetic induction, Maxwell's equations, propagation and radiation of electromagnetic waves, electric and magnetic properties of matter, and conservation laws. This is a graduate level subject which uses appropriate mathematics but whose emphasis is on physical phenomena and principles.

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Levitov, Leonid
Date Added:
01/01/2004
Electromagnetism II, Fall 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Survey of basic electromagnetic phenomena: electrostatics, magnetostatics; electromagnetic properties of matter. Time-dependent electromagnetic fields and Maxwell's equations. Electromagnetic waves, emission, absorption, and scattering of radiation. Relativistic electrodynamics and mechanics.

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Alan Guth
Min Chen
Date Added:
01/01/2012
Energy Forms, States and Conversions
Read the Fine Print
Rating
0.0 stars

The students participate in many demonstrations during the first day of this lesson to learn basic concepts related to the forms and states of energy. This knowledge is then applied the second day as they assess various everyday objects to determine what forms of energy are transformed to accomplish the object's intended task. The students use block diagrams to illustrate the form and state of energy flowing into and out of the process.

Subject:
Applied Science
Chemistry
Engineering
Physical Science
Physics
Technology
Material Type:
Activity/Lab
Lesson Plan
Author:
Jan DeWaters
Office of Educational Partnerships,
Susan Powers
Susan Powers, Jan DeWaters, and a number of Clarkson and St. Lawrence University students in the K-12 Project Based Learning Partnership Program
TeachEngineering.org
Date Added:
09/18/2014
The Engineer as a Problem-Solver: the Challenge of Temperature
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Engineering is about extending the horizons of society by solving technical problems, ranging from the meeting of basic human needs for food and shelter to the generation of wealth by trade. This unit looks at the impact of changes in temperature on a variety of objects and looks at the problem of boiling water.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Reading
Syllabus
Date Added:
09/07/2007
Engineering Nature: DNA Visualization and Manipulation
Rating
0.0 stars

Students are introduced to genetic techniques such as DNA electrophoresis and imaging technologies used for molecular and DNA structure visualization. In the field of molecular biology and genetics, biomedical engineering plays an increasing role in the development of new medical treatments and discoveries. Engineering applications of nanotechnology such as lab-on-a-chip and deoxyribonucleic acid (DNA) microarrays are used to study the human genome and decode the complex interactions involved in genetic processes.

Author:
TeachEngineering.org
Mircea Ionescu
Myla Van Duyn
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Engineering Out of Harry Situations: The Science Behind Harry Potter
Rating
0.0 stars

Under the "The Science Behind Harry Potter" theme, a succession of diverse complex scientific topics are presented to students through direct immersive interaction. Student interest is piqued by the incorporation of popular culture into the classroom via a series of interactive, hands-on Harry Potter/movie-themed lessons and activities. They learn about the basics of acid/base chemistry (invisible ink), genetics and trait prediction (parseltongue trait in families), and force and projectile motion (motion of the thrown remembrall). In each lesson and activity, students are also made aware of the engineering connections to these fields of scientific study.

Author:
TeachEngineering.org
Rachel Howser
Christine Hawthorne
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Estimating Buoyancy
Rating
0.0 stars

Students learn that buoyancy is responsible for making boats, hot air balloons and weather balloons float. They calculate whether or not a boat or balloon will float, and calculate the volume needed to make a balloon or boat of a certain mass float. Conduct the first day of the associated activity before conducting this lesson.

Author:
Mike Soltys
TeachEngineering.org
Integrated Teaching and Learning Program,
Marissa H. Forbes
Eureka! Or Buoyancy and Archimedes' Principle
Rating
0.0 stars

Students explore material properties in hands-on and visually evident ways via the Archimedes' principle. First, they design and conduct an experiment to calculate densities of various materials and present their findings to the class. Using this information, they identify an unknown material based on its density. Then, groups explore buoyant forces. They measure displacement needed for various materials to float on water and construct the equation for buoyancy. Using this equation, they calculate the numerical solution for a boat hull using given design parameters.

Author:
TeachEngineering.org
CREAM GK-12 Program, Engineering Education Research Center, College of Engineering and Architecture,
Andy Wekin
Everyone Is You and Me
Rating
0.0 stars

In this fun optics activity, learners explore principles of light, reflection (mirrors), and perception. Learners work in pairs and sit on opposite sides of a "two-way" mirror. Both partners vary the amount light illuminating their faces. As they adjust the light, they begin to see themselves gradually assuming aspects of their partner's features, so that their image becomes a "composite" person. This activate guide includes instructions on how to build a two-way mirror.

Author:
National Science Foundation
NEC Foundation of America
California Department of Education
The Exploratorium
Don Rathjen
Everything Balances Out in the End
Rating
0.0 stars

In this unit, students use online pan balances to study equality, order of operations, numerical and variable expressions, and other key algebraic concepts. Lessons focus on balancing shapes to study equality and equivalence; balancing algebraic understanding, to explore simplifying expressions; and balancing algebra, to determine if algebraic expressions are equal.

Author:
Marcy Cook
Experimental Physics I & II Junior Lab, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Becker, Ulrich
Date Added:
01/01/2007
Experimenting with Sound/Compression Waves Through Vibration.
Rating
0.0 stars

This activity is an inquiry lesson where students investigate objects and their associated sound due to vibration. Students will write their observation and interpret how and why sound vibrations occurs.

Author:
Chelsi Gross
chelsi gross
Exploring Black Holes: General Relativity and Astrophysics, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Study of physical effects in the vicinity of a black hole as the basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature or spacetime near rotating and nonrotating centers of attraction; the Global Positioning System and its dependence on general relativity; trajectories and orbits of particles. Subject has online component and classroom lectures are replaced with online interactions: manipulation of visualization software, access to websites describing current research, electronic submission of homework, and structured online discussions between undergraduates and alumni and with instructors and graduate specialists in the topics covered.

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Bertschinger, Edmund
Date Added:
01/01/2003
Exploring Bone Mineral Density
Rating
0.0 stars

In this activity, students will explore two given websites to gather information on Bone Mineral Density and how it is measured. They will also learn about X-rays in general, how they work and their different uses, along with other imaging modalities. They will answer guiding questions as they explore the websites and take a short quiz after to test the knowledge they gained while reading the articles.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Megan Johnston
Kristyn Shaffer (Primary Author)
Exploring Magnetism: Investigating the Forces of Magnets
Rating
0.0 stars

This activity is a classroom and lab investigation of magnetism. Students gather results of experiments involving the forces of magnets. They use this data to develop their own experiments to test properties of magnets.

Author:
Suzanne Bot
Exploring Newton's Second Law
Rating
0.0 stars

Using the scientific method this simple hands on experiment is designed to verify Newton's Second Law.

Author:
William Lubansky
William Lubansky
Exploring Sound: Length Makes a Difference
Rating
0.0 stars

In this introductory physics lab activity, students explore the sounds made by the free-end of a ruler vibrating off the end of a desk.

Author:
Kim Toops