Updating search results...

Search Resources

193 Results

View
Selected filters:
  • Atmospheric Science
San Juan Bay Estuary
Rating
0.0 stars

Puerto Rico's San Juan Bay Estuary faces multiple threats, including heavy use by urban populations and impacts of climate change. A workbook from the EPA's Climate Ready Estuaries program helped them catalog, prioritize, and address their climate risks.

Selecting Sites for Renewable Energy Projects
Rating
0.0 stars

In this activity, students use Google Earth to investigate a variety of renewable energy sources and select sites within the United States that would be appropriate for projects based on those sources.

Author:
Glenn A. Richard
Seminar in Geophysics: Thermal and Chemical Evolution of the Earth, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The main objective of this cross disciplinary course is to understand the historical development and the current status of ideas and models, to present and question the constraints from the different research fields, and to investigate if and how the different views on mantle flow can be reconciled with the currently available data.

Subject:
Atmospheric Science
Geology
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Van Der Hilst, Robert
Date Added:
01/01/2005
Sensing Air Pollution
Rating
0.0 stars

Students learn about electricity and air pollution while building devices to measure volatile organic compounds (VOC) by attaching VOC sensors to prototyping boards. In the second part of the activity, students evaluate the impact of various indoor air pollutants using the devices they made.

Author:
Mike Hannigan
Berkeley Almand
Integrated Teaching and Learning Program,
Sinking Water: A Connection With Glaciers, Ocean Currents and Weather Patterns
Rating
0.0 stars

This lesson has activities where students will learn about buoyancy and explore how hot water rises and cold water sinks. As an extension and real-life application, students will see that glacial run-off is occurring at a rapid pace and the cold glacial water could potentially change ocean currents thus influencing global climates.

Author:
Stanley Mraz
Solar Power Basics
Rating
0.0 stars

This introductory video summarizes the process of generating solar electricity from photovoltaic and concentrating (thermal) solar power technologies.

State Electricity on Google Earth: How many solar panels would it take?
Rating
0.0 stars

In this activity, learners use Google Earth to calculate electricity use by state and determine how much land would be required to replace all sources of electricity with solar panels. They also consider costs and land-use trade-offs.

Author:
Todd Greene
Billy Goodman
Maureen Padden
Stormy Skies
Read the Fine Print
Rating
0.0 stars

Students learn that wind and storms can form at the boundaries of interacting high and low pressure air masses. They learn the distinguishing features of the four main types of weather fronts (warm fronts, cold fronts, stationary fronts and occluded fronts) and how those fronts are depicted on a surface weather analysis, or weather map. Students also learn several different ways that engineers help with storm prediction, analysis and protection.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Glen Sirakavit
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Marissa Forbes
Date Added:
09/18/2014
Strange Bedfellows: Science and Environmental Policy, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

12.103 explores the role of scientific knowledge, discovery, method, and argument in environmental policymaking from both idealistic and realistic perspectives. The course will use case studies of science-intensive environmental controversies to study how science was used and abused in the policymaking process. Case studies include: global warming, biodiversity loss, and nuclear waste disposal siting. Subject includes intensive practice in the writing and presentation of "position statements" on environmental science issues.

Subject:
Applied Science
Atmospheric Science
Environmental Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Hodges, Kip
Date Added:
01/01/2005
Structural Geology, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces mechanics of rock deformation. Discusses recognition, interpretation, and mechanics of faults, folds, structural features of igneous and metamorphic rocks, and superposed deformations. Introduces regional structural geology and tectonics. Laboratory includes techniques of structural analysis, recognition and interpretation of structures on geologic maps, and construction of interpretive cross sections. Structural geology is the study of processes and products of rock deformation. This course introduces the techniques of structural geology through a survey of the mechanics of rock deformation, a survey of the features and geometries of faults and folds, and techniques of strain analysis. Regional structural geology and tectonics are introduced. Class lectures are supplemented by lab exercises and demonstrations as well as field trips to local outcrops.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Burchfiel, B. Clark
Date Added:
01/01/2005
Structure and Dynamics of the CMB Region, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Core Mantle Boundary (CMB) represents one of the most important physical and chemical discontinuities of the deep Earth as it separates the solid state, convective lower mantle from the liquid outer core. In this seminar course, we will examine our current understanding of the CMB region from integrated seismological, mineral physics and geodynamical perspectives. Instructors will introduce state-of-the-art methodologies that are employed to characterize the CMB region and relevant papers will be discussed in class. Topics will include CMB detection and topography, D'' anisotropy, seismic velocity anomalies (e.g., ultra-low velocity zones), temperature, chemical reactions, phase relations, and mineral fabrications at the core-mantle boundary. These results will be integrated to address the CMB's fundamental role in both mantle and core dynamics.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Rondenay, Stephane
Date Added:
01/01/2004
Structure of Earth Materials, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Provides a comprehensive introduction to crystalline structure, crystal chemistry, and bonding in rock-forming minerals. Introduces the theory relating crystal structure and crystal symmetry to physical properties such as refractive index, elastic modulus, and seismic velocity. Surveys the distribution of silicate, oxide, and metallic minerals in the interiors and on the surfaces of planets, and discusses the processes that led to their formation.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Evans, J
Grove, Timothy L.
Date Added:
01/01/2004
Surface Processes and Landscape Evolution, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course offers an introduction to quantitative analysis of geomorphic processes,and examines the interaction of climate, tectonics, and surface processes in the sculpting of Earth's surface.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Whipple, Kelin
Date Added:
01/01/2004
Take a Deep Breath on the Appalachian Trail in Great Smoky Mountains National Park: How Many Ozone Molecules Do You Inhale?
Rating
0.0 stars

Spreadsheets Across the Curriculum module/Geology of National Parks course. Students work with ratio and proportion and the concept of mole to calculate the number of molecules of ozone in a volume of air from concentration data.

Author:
Module by: Len Vacher, University of South Florida Cover Page by: Len Vacher and Amie Fishinger, University of South Florida
Tornado!
Rating
0.0 stars

Students learn about tornadoes - their basic characteristics, damage and occurrence. Students are introduced to the ways that engineers consider strong winds, specifically tornadoes, in their design of structures. Also, students learn how tornadoes are rated, and learn some basics of tornado safety.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Melissa Straten
Jessica Todd
Tornado Damage!
Rating
0.0 stars

Students learn about tornadoes, the damage they cause, and how to rate tornadoes. Specifically, students investigate the Enhanced Fujita Damage Scale of tornado intensity, and use it to complete a mock engineering analysis of damage caused by a tornado. Additional consideration is given to tornado warning systems and how these systems can be improved to be safer. Lastly, students learn basic tornado safety procedures.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Melissa Straten
Jessica Todd
Melissa Stewart