This course introduces the basic driving forces for electric current, fluid flow, …
This course introduces the basic driving forces for electric current, fluid flow, and mass transport, plus their application to a variety of biological systems. Basic mathematical and engineering tools will be introduced, in the context of biology and physiology. Various electrokinetic phenomena are also considered as an example of coupled nature of chemical-electro-mechanical driving forces. Applications include transport in biological tissues and across membranes, manipulation of cells and biomolecules, and microfluidics.
This activity is takes place in nature and in the classroom. Students …
This activity is takes place in nature and in the classroom. Students are gathering different types of leaves and naming characteristics of each then sorting them by those characteristics. Students then make a picture with leaves and writes 2-3 sentences about their picture using the characteristic words.
This video lesson shows students that math can play a role in …
This video lesson shows students that math can play a role in understanding how an infectious disease spreads and how it can be controlled. During this lesson, students will see and use both deterministic and probabilistic models and will learn by doing through role-playing exercises. The primary exercises between video segments of this lesson are class-intensive simulation games in which members of the class 'infect' each other under alternative math modeling assumptions about disease progression. Also there is an occasional class discussion and local discussion with nearby classmates.
In these life science activities, students will participate in field observations of …
In these life science activities, students will participate in field observations of living things & do research of animals they observe to create a food chain & present it to the class. Students will participate in a food web simulation game.
This subject describes and illustrates computational approaches to solving problems in systems …
This subject describes and illustrates computational approaches to solving problems in systems biology. A series of case-studies will be explored that demonstrate how an effective match between the statement of a biological problem and the selection of an appropriate algorithm or computational technique can lead to fundamental advances. The subject will cover several discrete and numerical algorithms used in simulation, feature extraction, and optimization for molecular, network, and systems models in biology.
This course is an introduction to computational biology emphasizing the fundamentals of …
This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas.
" During development, the genetic content of each cell remains, with a …
" During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which have proved to involve reversible alterations to both DNA and to proteins that bind DNA, are known as epigenetic, to distinguish them from genetic alterations to DNA sequence. In this course we will explore such epigenetic changes and study different approaches that can return a differentiated cell to an embryonic state in a process referred to as epigenetic reprogramming, which will ultimately allow generation of patient-specific stem cells and application to regenerative therapy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."
Linear elastic and elastic-plastic fracture mechanics. Experimental methods. Microstructural effects on fracture …
Linear elastic and elastic-plastic fracture mechanics. Experimental methods. Microstructural effects on fracture in metals, ceramics, polymers, thin films, biological materials and composites. Toughening mechanisms. Crack growth resistance and creep fracture. Interface fracture mechanics. Fatigue damage and dislocation substructures in single crystals. Stress- and strain-life approach to fatigue. Fatigue crack growth models and mechanisms. Variable amplitude fatigue. Corrosion fatigue. Case studies of fracture and fatigue in structural, bioimplant, and microelectronic components.
Since the discovery of the structure of the DNA double helix in …
Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.
Why are things in nature shaped the way they are? How do …
Why are things in nature shaped the way they are? How do birds fly? Why do bird nests look the way they do? How do woodpeckers peck? These are the types of questions Dr. Lorna Gibson's freshman seminar at MIT has been investigating. We invite you to explore with us. Questions such as these are the subject of biomimetic research. When engineers copy the shapes found in nature we call it Biomimetics. The word biomimic comes from bio, as in biology and mimetic, which means to copy. Join us as we explore and look for answers to why similar shapes occur in so many natural things and how physics change the shape of nature.
Are you interested in investigating how nature engineers itself? How engineers copy …
Are you interested in investigating how nature engineers itself? How engineers copy the shapes found in nature ("biomimetics")? This Freshman Seminar investigates why similar shapes occur in so many natural things and how physics changes the shape of nature. Why are things in nature shaped the way they are? How do birds fly? Why do bird nests look the way they do? How do woodpeckers peck? Why can't trees grow taller than they are? Why is grass skinny and hollow? What is the wood science behind musical instruments? Questions such as these are the subject of biomimetic research and they have been the focus of investigation in this course for the past three years.
"Like transistors in a computer, synapses perform complex computations and connect the …
"Like transistors in a computer, synapses perform complex computations and connect the brain's non-linear processing elements (neurons) into a functional circuit. Understanding the role of synapses in neuronal computation is essential to understanding how the brain works. In this course students will be introduced to cutting-edge research in the field of synaptic neurophysiology. The course will cover such topics as synapse formation, synaptic function, synaptic plasticity, the roles of synapses in higher cognitive processes and how synaptic dysfunction can lead to disease. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."
The need to identify sustainable forms of energy as an alternative to …
The need to identify sustainable forms of energy as an alternative to our dependence on depleting worldwide oil reserves is one of the grand challenges of our time. The energy from the sun converted into plant biomass is the most promising renewable resource available to humanity. This seminar will examine each of the critical steps along the pathway towards the conversion of plant biomass into ethanol. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, …
Fundamentals of Biology focuses on the basic principles of biochemistry, molecular biology, genetics, and recombinant DNA. These principles are necessary to understanding the basic mechanisms of life and anchor the biological knowledge that is required to understand many of the challenges in everyday life, from human health and disease to loss of biodiversity and environmental quality.
Basic subject in ecology: understanding the flow of energy and materials through …
Basic subject in ecology: understanding the flow of energy and materials through ecosystems, and what regulates the distribution and abundance of organisms. Productivity and biogeochemical cycles in ecosystems; trophic dynamics; community structure and stability; competition and predation; evolution and natural selection; population growth; and physiological ecology. Emphasis on aquatic systems.
How do we communicate with the outside world? How are our senses …
How do we communicate with the outside world? How are our senses of vision, smell, taste and pain controlled at the cellular and molecular levels? What causes medical conditions like allergies, hypertension, depression, obesity and various central nervous system disorders? G-protein coupled receptors (GPCRs) provide a major part of the answer to all of these questions. GPCRs constitute the largest family of cell-surface receptors and in humans are encoded by more than 1,000 genes. GPCRs convert extracellular messages into intracellular responses and are involved in essentially all physiological processes. GPCR dysfunction results in numerous human disorders, and over 50% of all prescription drugs on the market today directly or indirectly target GPCRs.In this course, we will discuss GPCR signal transduction pathways, GPCR oligomerization and the diseases caused by GPCR dysfunction. We will study the structure and function of rhodopsin, a dim-light photoreceptor and a well-studied GPCR that converts light into electric impulses sent to the brain and leads to vision. We will also discuss how mutations in rhodopsin cause retinal degeneration and congenital night blindness. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
The topic of this video module is genetic basis for variation among …
The topic of this video module is genetic basis for variation among humans. The main learning objective is that students will learn the genetic mechanisms that cause variation among humans (parents and children, brothers and sisters) and how to calculate the probability that two individuals will have an identical genetic makeup. This module does not require many prerequisites, only a general knowledge of DNA as the genetic material, as well as a knowledge of meiosis.
Deals with the specific functions of neurons, the interactions of neurons in …
Deals with the specific functions of neurons, the interactions of neurons in development, and the organization of neuronal ensembles to produce behavior, by functional analysis of mutations and molecular analysis of their genes. Concentrates on work with nematodes, fruit flies, mice, and humans.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.