The goal of this lesson is to introduce students who are interested …
The goal of this lesson is to introduce students who are interested in human biology and biochemistry to the subtleties of energy metabolism (typically not presented in standard biology and biochemistry textbooks) through the lens of ATP as the primary energy currency of the cell. Avoiding the details of the major pathways of energy production (such as glycolysis, the citric acid cycle, and oxidative phosphorylation), this lesson is focused exclusively on ATP, which is truly the fuel of life. Starting with the discovery and history of ATP, this lesson will walk the students through 8 segments (outlined below) interspersed by 7 in-class challenge questions and activities, to the final step of ATP production by the ATP synthase, an amazing molecular machine. A basic understanding of the components and subcellular organization (e.g. organelles, membranes, etc.) and chemical foundation (e.g. biomolecules, chemical equilibrium, biochemical energetics, etc.) of a eukaryotic cell is a desired prerequisite, but it is not a must. Through interactive in-class activities, this lesson is designed to spark the students’ interest in biochemistry and human biology as a whole, but could serve as an introductory lesson to teaching advanced concepts of metabolism and bioenergetics in high school depending on the local science curriculum. No supplies or materials are needed.
This activity first asks the students to study the patterns of bird …
This activity first asks the students to study the patterns of bird flight and understand that four main forces affect the flight abilities of a bird. They will study the shape, feather structure, and resulting differences in the pattern of flight. They will then look at several articles that feature newly designed planes and the birds that they are modeled after. The final component of this activity is to watch the Nature documentary, "Raptor Force" which chronicles the flight patterns of birds, how researchers study these animals, and what interests our military and aeronautical engineers about these natural adaptations. This activity serves as an extension to the biomimetics lesson. Although students will not be using this information in the design process for their desert resort, it provides interesting information pertaining to the current use of biomimetics in the field of aviation. Students may extend their design process by using this information to create a means of transportation to and from the resort if they chose to.
Reviews selected issues including learning, cognition, perception, foraging and feeding, migration and …
Reviews selected issues including learning, cognition, perception, foraging and feeding, migration and navigation, defense, and social activities including conflict, collaboration, courtship and reproduction, and communication. The interacting contributions of environment and heredity are examined and the approaches of psychology, ethology, and ecology to this area of study are treated. The relation of human behavior patterns to those of nonhuman animals is explored. Additional readings and a paper are required for graduate credit.
This course studies the relations of affect to cognition and behavior, feeling …
This course studies the relations of affect to cognition and behavior, feeling to thinking and acting, and values to beliefs and practices. These connections will be considered at the psychological level of organization and in terms of their neurobiological and sociocultural counterparts.
Tribal communities in southeastern Alaska are partnering with federal and state agencies …
Tribal communities in southeastern Alaska are partnering with federal and state agencies to investigate increasing harmful algal bloomsevents that pose human health risks to subsistence harvesters.
This course is offered to undergraduates and addresses several algorithmic challenges in …
This course is offered to undergraduates and addresses several algorithmic challenges in computational biology. The principles of algorithmic design for biological datasets are studied and existing algorithms analyzed for application to real datasets. Topics covered include: biological sequence analysis, gene identification, regulatory motif discovery, genome assembly, genome duplication and rearrangements, evolutionary theory, clustering algorithms, and scale-free networks.
This class analyzes complex biological processes from the molecular, cellular, extracellular, and …
This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.
Most of the major categories of adaptive behavior can be seen in …
Most of the major categories of adaptive behavior can be seen in all animals. This course begins with the evolution of behavior, the driver of nervous system evolution, reviewed using concepts developed in ethology, sociobiology, other comparative studies, and in studies of brain evolution. The roles of various types of plasticity are considered, as well as foraging and feeding, defensive and aggressive behavior, courtship and reproduction, migration and navigation, social activities and communication, with contributions of inherited patterns and cognitive abilities. Both field and laboratory based studies are reviewed; and finally, human behavior is considered within the context of primate studies.
Hibernation is an ingenious adaptation that some animals employ to survive difficult …
Hibernation is an ingenious adaptation that some animals employ to survive difficult conditions in winter. This unit examines the differences between hibernation and torpor, and discusses the characteristic signs of hibernation behavior It explores the triggers that bring on hibernation, and whether internal signals or external season cues are predominant. It also examines the physiological adaptations that occur in hibernating animals.
The extreme challenges of life in the polar regions require the animals …
The extreme challenges of life in the polar regions require the animals who make their habitat there to make many adaptations. This unit explores the polar climate and how animals like reindeer, polar bears, penguins, sea life and even humans manage to survive there. It looks at the adaptations to physiological proceses, the environmental effects on diet, activity and fecundity, and contrasts the strategies of aquatic and land-based animals in surviving in this extreme habitat. This unit builds on and develops ideas from two other 'Animals at the extreme' units: The desert environment (S324_1) and Hibernation and torpor (S324_2).
Animal life has adapted to survive in the most unlikely and inhospitable …
Animal life has adapted to survive in the most unlikely and inhospitable habitats. This unit looks at the surprisingly diverse desert climates throughout the world and mammals, birds, lizards and amphibians that survive there. It splits these animals into three groups according to their strategy for survival: evaders, evaporators and endurers, then discusses how these strategies work on a biochemical and physiological level.
The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria …
The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
In this class we will learn about how the process of DNA …
In this class we will learn about how the process of DNA replication is regulated throughout the cell cycle and what happens when DNA replication goes awry. How does the cell know when and where to begin replicating its DNA? How does a cell prevent its DNA from being replicated more than once? How does damaged DNA cause the cell to arrest DNA replication until that damage has been repaired? And how is the duplication of the genome coordinated with other essential processes? We will examine both classical and current papers from the scientific literature to provide answers to these questions and to gain insights into how biologists have approached such problems. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
Students are introduced to the concept of engineering biological organisms and studying …
Students are introduced to the concept of engineering biological organisms and studying their growth to be able to identify periods of fast and slow growth. They learn that bacteria are found everywhere, including on the surfaces of our hands. Student groups study three different conditions under which bacteria are found and compare the growth of the individual bacteria from each source. In addition to monitoring the quantity of bacteria from differ conditions, they record the growth of bacteria over time, which is an excellent tool to study binary fission and the reproduction of unicellular organisms.
In this inquiry activity, students generate investigable questions to explore the link …
In this inquiry activity, students generate investigable questions to explore the link between hygiene/cleanliness and bacteria growth/population. The students will present their conclusions, and video clips containing additional information will be discussed.
" Where do new drugs and treatments come from? This class will …
" Where do new drugs and treatments come from? This class will take you from the test tubes and mice of the laboratory to the treatment of patients with deadly blood disorders. Students will learn how to think as a scientist through discussion of primary research papers describing the discoveries of several novel treatments. Topics such as gene therapy, the potential of drugs based on RNA interference and the reprogramming of somatic cells into stem cells for regenerative medicine will be discussed. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."
This course focuses on the interaction of chemical engineering, biochemistry, and microbiology. …
This course focuses on the interaction of chemical engineering, biochemistry, and microbiology. Mathematical representations of microbial systems are featured among lecture topics. Kinetics of growth, death, and metabolism are also covered. Continuous fermentation, agitation, mass transfer, and scale-up in fermentation systems, and enzyme technology round out the subject material.
Biochemistry is the study of the chemical processes and compounds, such as …
Biochemistry is the study of the chemical processes and compounds, such as cellular makeup, that bring about life in organisms. This course will look at how these formed biomolecules interact and produce many of life's necessary processes. Also it will look at the most commonly used techniques in biochemistry research. Upon successful completion of this course, students will be able to: recognize and describe the structure of the following basic biomolecules: nucleic acids, amino acids, lipids, carbohydrates; diagram how these basic biomolecules are used as building blocks for more complex biomolecules; differentiate between reactions that create biomolecules; describe how these biomolecules are used in specific cellular pathways and processes; analyze how feedback from one pathway influences other pathways; explain how energy is utilized by a cell; indicate how biomolecules and pathways are regulated; describe how enzymes play a key role in catalysis; assess which biochemical technique should be used to study a given biochemical problem. (Biology 401; See also: Chemistry 109)
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.