Updating search results...

Search Resources

105 Results

View
Selected filters:
  • Electronic Technology
Dynamics and Control II, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Upon successful completion of this course, students will be able to: * Create lumped parameter models (expressed as ODEs) of simple dynamic systems in the electrical and mechanical energy domains * Make quantitative estimates of model parameters from experimental measurements * Obtain the time-domain response of linear systems to initial conditions and/or common forcing functions (specifically; impulse, step and ramp input) by both analytical and computational methods * Obtain the frequency-domain response of linear systems to sinusoidal inputs * Compensate the transient response of dynamic systems using feedback techniques * Design, implement and test an active control system to achieve a desired performance measureMastery of these topics will be assessed via homework, quizzes/exams, and lab assignments.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Textbook
Author:
Rowell, Derek
Date Added:
01/01/2008
Electrifying the World
Read the Fine Print
Rating
0.0 stars

This lesson introduces students to the fundamental concepts of electricity. This is accomplished by addressing questions such as "How is electricity generated," and "How is it used in every-day life?" The lesson also includes illustrative examples of circuit diagrams to help explain how electricity flows.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Author:
Engineering K-PhD Program,
Wendy Lin
Date Added:
09/18/2014
Electrocardiograph Building
Rating
0.0 stars

Building on concepts taught in the associated lesson, students learn about bioelectricity, electrical circuits and biology as they use deductive and analytical thinking skills in connection with an engineering education. Students interact with a rudimentary electrocardiograph circuit (made by the teacher) and examine the simplicity of the device. They get to see their own cardiac signals and test the device themselves. During the second part of the activity, a series of worksheets, students examine different EKG print-outs and look for irregularities, as is done for heart disease detection.

Author:
Leyf Peirce
Mark Remaly
Katherine Murray
James Crawford
Biomedical Engineering,
Shayn Peirce
Electromagnetics and Applications, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy."

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Textbook
Author:
Staelin, David
Date Added:
01/01/2009
Electromechanical Dynamics, Spring 2009
Rating
0.0 stars

First published in 1968 by John Wiley and Sons, Inc., Electromechanical Dynamics discusses the interaction of electromagnetic fields with media in motion. The subject combines classical mechanics and electromagnetic theory and provides opportunities to develop physical intuition. The book uses examples that emphasize the connections between physical reality and analytical models. Types of electromechanical interactions covered include rotating machinery, plasma dynamics, the electromechanics of biological systems, and magnetoelasticity. An accompanying solutions manual for the problems in the text is provided.

Author:
Woodson, Herbert H.
Electrons on the Move
Read the Fine Print
Rating
0.0 stars

Students learn about current electricity and necessary conditions for the existence of an electric current. Students construct a simple electric circuit and a galvanic cell to help them understand voltage, current and resistance.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Author:
Daria Kotys-Schwartz
Denise Carlson
Integrated Teaching and Learning Program,
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
09/18/2014
Engineering Technology (Robotics) Model
Rating
0.0 stars

***LOGIN REQUIRED*** Engineering Technology provides learning opportunities for students interested in preparing for careers in the design, production, and maintenance of mechanical, telecommunications, electrical, electronics, and electromechanical products and systems.

Estimating the Storage Capacity of a CD/DVD
Rating
0.0 stars

Students estimate the storage capacity of CDs and DVDs by assessing diffraction patterns of green and red laser beams.

Author:
Lars Seemann
Mila Bersabal
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Feedback Systems, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to design of feedback systems. Properties and advantages of feedback systems. Time-domain and frequency-domain performance measures. Stability and degree of stability. Nyquist criterion. Frequency-domain design. Root locus method. Compensation techniques. Application to a wide variety of physical systems. Some previous laboratory experience with electronic systems is assumed (6.002 or 6.071 or 16.040).

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Textbook
Author:
Roberge, James
Date Added:
01/01/2007
Filtering: Removing Noise from a Distress Signal
Rating
0.0 stars

Students learn the basic principles of filtering as well as how to apply digital filters to extract part of an audio signal by using an interactive online demo website. They apply this knowledge in order to isolate a voice recording from a heavily noise-contaminated sound wave. After completing the associated lesson, expect students to be able to attempt (and many successfully finish) this activity with minimal help from the instructor.

Author:
Connor McKay, Chris Light, Ayoade Adekola, Michael B. Wakin, Dehui Yang, Kyle R. Feaster
NSF CAREER Award, Department of Electrical Engineering and Computer Science, Colorado School of Mines,
Follow the Light
Rating
0.0 stars

Students' understanding of how robotic light sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and light sensors. Working in pairs, students program LEGO robots to follow a flashlight as its light beam moves around. Students practice and learn programming skills and logic design in parallel. They see how robots take input from light sensors and use it to make decisions to move, similar to the human sense of sight. Students also see how they perform the steps of the engineering design process in the course of designing and testing to achieve a successful program. A PowerPoint® presentation and pre/post quizzes are provided.

Author:
GK-12 Program, Computational Neurobiology Center,
Nishant Sinha, Pranit Samarth, Satish S. Nair
Generators: Three Mile Island vs. Hoover Dam
Rating
0.0 stars

Students are given a history of electricity and its development into the modern age lifeline upon which we so depend. The methods of power generation are introduced, and further discussion of each technology's pros and cons follows.

Author:
Techtronics Program,
Brandon Jones
Get Charged!
Rating
0.0 stars

Students are introduced to the idea of electrical energy. They learn about the relationships between charge, voltage, current and resistance. They discover that electrical energy is the form of energy that powers most of their household appliances and toys. In the associated activities, students learn how a circuit works and test materials to see if they conduct electricity. Building upon a general understanding of electrical energy, they design their own potato power experiment. In two literacy activities, students learn about the electrical power grid and blackouts.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Sharon D. Perez-Suarez
Jeff Lyng
Get Your Motor Running
Rating
0.0 stars

Students investigate motors and electromagnets as they construct their own simple electric motors using batteries, magnets, paper clips and wire.

Author:
Janet Yowell
Joe Friedrichsen
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise Carlson
Ashleigh Bailey
Abigail Watrous
Go with the Flow
Read the Fine Print
Rating
0.0 stars

Students gain an understanding of the difference between electrical conductors and insulators, and experience recognizing a conductor by its material properties. In a hands-on activity, students build a conductivity tester to determine whether different objects are conductors or insulators. In another activity, students use their understanding of electrical properties to choose appropriate materials to design and build their own basic circuit switch.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Lesson Plan
Author:
Daria Kotys Schwartz
Denise Carlson
Integrated Teaching and Learning Program,
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
09/18/2014
Hands-On Introduction to Electrical Engineering Lab Skills, January (IAP) 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course introduces students to both passive and active electronic components (op-amps, 555 timers, TTL digital circuits). Basic analog and digital circuits and theory of operation are covered. The labs allow the students to master the use of electronic instruments and construct and/or solder several circuits. The labs also reinforce the concepts discussed in class with a hands-on approach and allow the students to gain significant experience with electrical instruments such as function generators, digital multimeters, oscilloscopes, logic analyzers and power supplies. In the last lab, the students build an electronic circuit that they can keep. The course is geared to freshmen and others who want an introduction to electronics circuits. This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Textbook
Author:
Gim Hom
Date Added:
01/01/2008
Hare and Snail Challenges
Rating
0.0 stars

Students engage in the second design challenge of the unit, which is an extension of the maze challenge they solved in the first lesson/activity of this unit. Students extend the ideas learned in the maze challenge with a focus more on the robot design. Gears are a very important part of any machine, particularly when it has a power source such as engine or motor. Specifically, students learn how to design the gear train from the LEGO MINDSTORMS(TM) NXT servomotor to the wheel to make the LEGO taskbot go faster or slower. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.

Author:
Sachin Nair, Pranit Samarth, Satish S. Nair
GK-12 Program, Computational Neurobiology Center,
How Does a Robot Work?
Rating
0.0 stars

This lesson introduces electricity, batteries and motors using a LEGO® MINDSTORMS NXT® robot. The associated activity guides students to build a simple LEGO NXT set-up and see the practical implementation of the concepts discussed. Before studying the importance of electricity and how it is crucial for robot movement, students consider various electronic devices they use in their daily lives so that they have an understanding of how engineers use electricity to power such devices, including robots. The lesson starts with a brief introduction to electricity and the working of batteries. A simple electrical circuit demonstration highlights how three basic electrical devices (buzzer, LED and motor) are driven by electricity. An activity at the end further reinforces these concepts.

Author:
Satish Nair
GK-12 Program, Computational Neurobiology Center, College of Engineering,
Kalyani Upendram
Ajay Nair
Ice, Ice, PV!
Rating
0.0 stars

Students examine how the power output of a photovoltaic (PV) solar panel is affected by temperature changes. Using a 100-watt lamp and a small PV panel connected to a digital multimeter, teams vary the temperature of the panel and record the resulting voltage output. They plot the panel's power output and calculate the panel's temperature coefficient.

Author:
William Surles, Jack Baum Abby Watrous, Stephen Johnson, Eszter Horanyi, Malinda Schaefer Zarske (This high school curriculum was originally created as a class project by engineering students in a Building Systems Program course at CU-Boulder.)
Integrated Teaching and Learning Program,
The Incredible Shrinking Chip
Rating
0.0 stars

One of the most important technologies in use today is also one of the smallest. The microchip was invented in Scotland in 1947 and is now at the heart of the electronics industry. This unit uses video clips to explore how the microchip is made and how it