Updating search results...

Search Resources

130 Results

View
Selected filters:
  • human-body
DNA Build
Rating
0.0 stars

Students reinforce their knowledge that DNA is the genetic material for all living things by modeling it using toothpicks and gumdrops that represent the four biochemicals (adenine, thiamine, guanine, and cytosine) that pair with each other in a specific pattern, making a double helix. They investigate specific DNA sequences that code for certain physical characteristics such as eye and hair color. Student teams trade DNA "strands" and de-code the genetic sequences to determine the physical characteristics (phenotype) displayed by the strands (genotype) from other groups. Students extend their knowledge to learn about DNA fingerprinting and recognizing DNA alterations that may result in genetic disorders.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Megan Schroeder
DNA: The Human Body Recipe
Rating
0.0 stars

As a class, students work through an example showing how DNA provides the "recipe" for making our body proteins. They see how the pattern of nucleotide bases (adenine, thymine, guanine, cytosine) forms the double helix ladder shape of DNA, and serves as the code for the steps required to make genes. They also learn some ways that engineers and scientists are applying their understanding of DNA in our world.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Frank Burkholder
Jessica Todd
Digestion Simulation
Read the Fine Print
Rating
0.0 stars

To reinforce students' understanding of the human digestion process, the functions of several stomach and small intestine fluids are analyzed, and the concept of simulation is introduced through a short, introductory demonstration of how these fluids work. Students learn what simulation means and how it relates to the engineering process, particularly in biomedical engineering. The teacher demo requires vinegar, baking soda, water and aspirin.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Jacob Crosby
Malinda Schaefer Zarske
Date Added:
09/18/2014
Digestion in Human Beings 3D CBSE Class 7 Science
Rating
0.0 stars

Human beings take food through mouth and digest it in specific organs for digestion. The undigested food is defecated.
The food we take passes through a specific canal which begins with buccal cavity and ends at the anus. This canal is called alimentary canal or the digestive tract

Author:
iDaalearning
Does My Model Valve Stack up to the Real Thing?
Rating
0.0 stars

Following the steps of the iterative engineering design process, student teams use what they learned in the previous lessons and activity in this unit to research and choose materials for their model heart valves and test those materials to compare their properties to known properties of real heart valve tissues. Once testing is complete, they choose final materials and design and construct prototype valve models, then test them and evaluate their data. Based on their evaluations, students consider how they might redesign their models for improvement and then change some aspect of their models and retest aiming to design optimal heart valve models as solutions to the unit's overarching design challenge. They conclude by presenting for client review, in both verbal and written portfolio/report formats, summaries and descriptions of their final products with supporting data.

Author:
Michael Duplessis
VU Bioengineering RET Program, School of Engineering, Vanderbilt University,
Don't Bump into Me!
Rating
0.0 stars

Students' understanding of how robotic ultrasonic sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors. Student groups program their robots to move freely without bumping into obstacles (toy LEGO people). They practice and learn programming skills and logic design in parallel. They see how robots take input from ultrasonic sensors and use it to make decisions to move, resulting in behavior similar to the human sense of sight but through the use of sound sensors, more like echolocation. Students design-test-redesign-retest to achieve successful programs. A PowerPoint® presentation and pre/post quizzes are provided.

Author:
GK-12 Program, Computational Neurobiology Center,
Nishant Sinha, Pranit Samarth, Satish S. Nair
Drug Filtering
Rating
0.0 stars

In this math meets health science activity, learners observe a model of exponential decay, and how kidneys filter blood. Learners will calculate the amount of a drug in the body over a period of time. Then, they will make and analyze the graphical representation of this exponential function. This lesson guide includes questions for learners, assessment options, extensions, and reflection questions.

Author:
Lawrence F. Iles
Elasticity & Young's Modulus for Tissue Analysis
Rating
0.0 stars

As part of the engineering design process to create testable model heart valves, students learn about the forces at play in the human body to open and close aortic valves. They learn about blood flow forces, elasticity, stress, strain, valve structure and tissue properties, and Young's modulus, including laminar and oscillatory flow, stress vs. strain relationship and how to calculate Young's modulus. They complete some practice problems that use the equations learned in the lesson mathematical functions that relate to the functioning of the human heart. With this understanding, students are ready for the associated activity, during which they research and test materials and incorporate the most suitable to design, build and test their own prototype model heart valves.

Author:
Michael Duplessis
VU Bioengineering RET Program, School of Engineering, Vanderbilt University,
Engineering Bones
Read the Fine Print
Rating
0.0 stars

Students extend their knowledge of the skeletal system to biomedical engineering design, specifically the concept of artificial limbs. Students relate the skeleton as a structural system, focusing on the leg as structural necessity. They learn about the design considerations involved in the creation of artificial limbs, including materials and sensors.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Engineering and the Human Body
Rating
0.0 stars

This unit covers the broad spectrum of topics that make-up our very amazing human body. Students are introduced to the space environment and learn the major differences between the environment on Earth and that of outer space. The engineering challenges that arise because of these discrepancies are also discussed. Then, students dive into the different components that make up the human body: muscles, bones and joints, the digestive and circulatory systems, the nervous and endocrine systems, the urinary system, the respiratory system, and finally the immune system. Students learn about the different types of muscles in the human body and the effects of microgravity on muscles. Also, they learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. In the lessons on the digestive, circulatory, nervous and endocrine systems, students learn how these vital system work and the challenges faced by astronauts whose systems are impacted by spaceflight. And lastly, advances in engineering technology are discussed through the lessons on the urinary, respiratory and immune systems while students learn how these systems work with all the other body components to help keep the human body healthy.

Author:
Integrated Teaching and Learning Program,
Engineering the Heart: Heart Valves
Rating
0.0 stars

Students learn how healthy human heart valves function and the different diseases that can affect heart valves. They also learn about devices and procedures that biomedical engineers have designed to help people with damaged or diseased heart valves. Students learn about the pros and cons of different materials and how doctors choose which engineered artificial heart valves are appropriate for certain people.

Author:
Carleigh Samson
Brandi Briggs
Integrated Teaching and Learning Program,
Ben Terry
Everyone Is You and Me
Rating
0.0 stars

In this fun optics activity, learners explore principles of light, reflection (mirrors), and perception. Learners work in pairs and sit on opposite sides of a "two-way" mirror. Both partners vary the amount light illuminating their faces. As they adjust the light, they begin to see themselves gradually assuming aspects of their partner's features, so that their image becomes a "composite" person. This activate guide includes instructions on how to build a two-way mirror.

Author:
National Science Foundation
NEC Foundation of America
California Department of Education
The Exploratorium
Don Rathjen
Feel Better Faster: All about Flow Rate
Rating
0.0 stars

All of us have felt sick at some point in our lives. Many times, we find ourselves asking, "What is the quickest way that I can start to feel better?" During this two-lesson unit, students study that question and determine which form of medicine delivery (pill, liquid, injection/shot) offers the fastest relief. This challenge question serves as a real-world context for learning all about flow rates. Students study how long various prescription methods take to introduce chemicals into our blood streams, as well as use flow rate to determine how increasing a person's heart rate can theoretically make medicines work more quickly. Students are introduced to engineering devices that simulate what occurs during the distribution of antibiotic cells in the body.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Michelle Woods
Floppy Heart Valves
Rating
0.0 stars

Students are presented with an engineering challenge that asks them to develop a material and model that can be used to test the properties of aortic valves without using real specimens. Developing material that is similar to human heart valves makes testing easier for biomedical engineers because they can test new devices or ideas on the model valve instead of real heart valves, which can be difficult to obtain for research. To meet the challenge, students are presented with a variety of background information, are asked to research the topic to learn more specific information pertaining to the challenge, and design and build a (prototype) product. After students test their products and make modifications as needed, they convey background and product information in the form of portfolios and presentations to the potential buyer.

Author:
Michael Duplessis
VU Bioengineering RET Program, School of Engineering, Vanderbilt University,
Follow the Light
Rating
0.0 stars

Students' understanding of how robotic light sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and light sensors. Working in pairs, students program LEGO robots to follow a flashlight as its light beam moves around. Students practice and learn programming skills and logic design in parallel. They see how robots take input from light sensors and use it to make decisions to move, similar to the human sense of sight. Students also see how they perform the steps of the engineering design process in the course of designing and testing to achieve a successful program. A PowerPoint® presentation and pre/post quizzes are provided.

Author:
GK-12 Program, Computational Neurobiology Center,
Nishant Sinha, Pranit Samarth, Satish S. Nair
Forced to Fracture
Rating
0.0 stars

Students learn how forces affect the human skeletal system through fractures and why certain bones are more likely to break than others depending on their design and use in the body. They learn how engineers and doctors collaborate to design effective treatments with consideration for the location, fracture severity and patient age, as well as the use of biocompatible materials. Learning the lesson content prepares students for the associated activity in which they test small animal bones to failure and then design treatment repair plans.

Author:
Andrea Lee, Megan Ketchum
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Gait Analysis
Rating
0.0 stars

In this open-ended, hands-on activity that provides practice in engineering data analysis, students are given gait signature metric (GSM) data for known people types (adults and children). Working in teams, they analyze the data and develop models that they believe represent the data. They test their models against similar, but unknown (to the students) data to see how accurate their models are in predicting adult vs. child human subjects given known GSM data. They manipulate and graph data in Excel® to conduct their analyses.

Author:
IMPART RET Program, College of Information Science & Technology,
Jeremy Scheffler, Brian Sandall
Giant Lens
Rating
0.0 stars

In this activity about light and refraction, learners discover how a lens creates an image that hangs in midair. A large Fresnel lens creates upside-down images of distant objects and right-side-up images of nearby objects. Learners can locate the upside-down images by using a piece of white paper as a screen. The right-side-up images are harder to find. Activity includes detailed explanations and diagrams to explain how the images are created.

Author:
National Science Foundation
NEC Foundation of America
California Department of Education
The Exploratorium
Don Rathjen
Hand Battery
Rating
0.0 stars

In this activity about chemistry and electricity, learners form a battery by placing their hands onto plates of different metals. Learners detect the current by reading a DC microammeter attached to the metal plates. Learners experiment with different metals to find out what combination produces the most current as well as testing what happens when they press harder on the plates or wet their hands. Learners also investigate what happens when they wire the plates to a voltmeter.

Author:
The Exploratorium
California Department of Education
NEC Foundation of America
National Science Foundation
Healthcare and Medicine - Blood: Bohr Effect vs. Haldane Effect
Rating
0.0 stars

Take a close look at how some friendly competition for Hemoglobin allows the body to more efficiently move oxygen and carbon Dioxide around. Rishi is a pediatric infectious disease physician and works at Khan Academy.

Author:
Khan, Salman