Updating search results...

Search Resources

207 Results

View
Selected filters:
Design, Build and Test Your Own Landfill
Rating
0.0 stars

Students design and build model landfills using materials similar to those used by engineers for full-scale landfills. Their completed small-size landfills are "rained" on and subjected to other erosion processes. The goal is to create landfills that hold the most garbage, minimize the cost to build and keep trash and contaminated water inside the landfill to prevent it from causing environmental damage. Teams create designs within given budgets, test the landfills' performance, and graph and compare designs for capacity, cost and performance.

Author:
Jean Parks, Denise W. Carlson
Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,
Design Step 1: Identify the Need
Rating
0.0 stars

Students practice the initial steps involved in an engineering design challenge. They begin by reviewing the steps of the engineering design loop and discussing the client need for the project. Next, they identify a relevant context, define the problem within their design teams, and examine the project's requirements and constraints. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function].)

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Lauren Cooper
Denise W. Carlson
Design Step 2: Research the Problem
Rating
0.0 stars

Through Internet research, patent research, standards and codes research, user interviews (if possible) and other techniques (idea web, reverse engineering), students further develop the context for their design challenge. In subsequent activities, the design teams use this body of knowledge about the problem to generate product design ideas. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function]. This activity is Step 2 in a series of six that guide students through the engineering design loop.)

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Lauren Cooper
Denise W. Carlson
Design Step 3: Brainstorm Possible Solutions
Rating
0.0 stars

Brainstorming is a team creativity activity that helps generate a large number of potential solutions to a problem. In this activity, students participate in a group brainstorming activity to generate possible solutions to their engineering design challenge. Students learn brainstorming guidelines and practice within their teams to create a poster of ideas. The posters are used in a large group critiquing activity that ultimately helps student teams create a design project outline. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 3 in a series of six that guide students through the engineering design loop.)

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Lauren Cooper
Denise W. Carlson
Design Step 4: Engineering Analysis
Rating
0.0 stars

Engineering analysis distinguishes true engineering design from "tinkering." In this activity, students are guided through an example engineering analysis scenario for a scooter. Then they perform a similar analysis on the design solutions they brainstormed in the previous activity in this unit. At activity conclusion, students should be able to defend one most-promising possible solution to their design challenge. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 4 in a series of six that guide students through the engineering design loop.)

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Lauren Cooper
Denise W. Carlson
Design Step 5: Construct a Prototype
Rating
0.0 stars

Students learn about the manufacturing phase of the engineering design process. They start by building prototypes, which is a special type of model used to test new design ideas. Students gain experience using a variety of simple building materials, such as foam core board, balsa wood, cardstock and hot glue. They present their prototypes to the class for user testing and create prototype iterations based on feedback. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 5 in a series of six that guide students through the engineering design loop.)

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Lauren Cooper
Denise W. Carlson
Design Step 6: Evaluate/Manufacture a Final Product
Rating
0.0 stars

As students learn more about the manufacturing process, they use the final prototypes created in the previous activity to evaluate, design and manufacture final products. Teams work with more advanced materials and tools, such as plywood, Plexiglas, metals, epoxies, welding materials and machining tools. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 6 in a series of six that guide students through the engineering design loop.)

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Lauren Cooper
Denise W. Carlson
Design a Solar City
Rating
0.0 stars

Students design and build a model city powered by the sun! They learn about the benefits of solar power, and how architectural and building engineers integrate photovoltaic panels into the design of buildings.

Author:
Bev Louie
Integrated Teaching and Learning Program,
Abbie Watrous
Denise W. Carlson
Jean Parks
Lesley Herrmann
Designing Bridges
Rating
0.0 stars

Students learn about the types of possible loads, how to calculate ultimate load combinations, and investigate the different sizes for the beams (girders) and columns (piers) of simple bridge design. Students learn the steps that engineers use to design bridges: understanding the problem, determining the potential bridge loads, calculating the highest possible load, and calculating the amount of material needed to resist the loads.

Author:
Integrated Teaching and Learning Program and Laboratory,
Malinda Schaefer Zarske
Natalie Mach
Denise W. Carlson
Denali Lander
Jonathan S. Goode
Christopher Valenti
Joe Friedrichsen
Designing a Robotic Surgical Device
Rating
0.0 stars

Student teams create laparoscopic surgical robots designed to reduce the invasiveness of diagnosing endometriosis and investigate how the disease forms and spreads. Using a synthetic abdominal cavity simulator, students test and iterate their remotely controlled, camera-toting prototype devices, which must fit through small incisions, inspect the organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. Note: This activity is the core design project for a semester-long, three-credit high school engineering course. Refer to the associated curricular unit for preparatory lessons and activities.

Author:
Integrated Teaching and Learning Program,
Benjamin S. Terry, Brandi N. Briggs, Stephanie Rivale, Denise W. Carlson
Designing a Thermostat
Rating
0.0 stars

Students investigate circuits and their components by building a basic thermostat. They learn why key parts are necessary for the circuit to function, and alter the circuit to optimize the thermostat temperature range. They also gain an awareness of how electrical engineers design circuits for the countless electronic products in our world.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Lauren Cooper
Tyler Maline
Destination Outer Space
Rating
0.0 stars

Students acquire a basic understanding of the science and engineering of space travel as well as a brief history of space exploration. They learn about the scientists and engineers who made space travel possible and briefly examine some famous space missions. Finally, they learn the basics of rocket science (Newton's third law of motion), the main components of rockets and the U.S. space shuttle, and how engineers are involved in creating and launching spacecraft.

Author:
Integrated Teaching and Learning Program,
Denise W. Carlson
Jessica Butterfield
Jessica Todd
Geoff Hill
TeachEngineering.org
Denise Carlson
Sam Semakula
Detail Drawings: Communicating with Engineers
Rating
0.0 stars

Students are introduced to detail drawings and the importance of clearly documenting and communicating their designs. They are introduced to the American National Standards Institute (ANSI) Y14.5 standard, which controls how engineers communicate and archive design information. They are introduced to standard paper sizes and drawing view conventions, which are major components of the Y14.5 standard.

Author:
TeachEngineering.org
Benjamin S. Terry, Stephanie Rivale, Denise W. Carlson
Integrated Teaching and Learning Program,
Digestion Simulation
Read the Fine Print
Rating
0.0 stars

To reinforce students' understanding of the human digestion process, the functions of several stomach and small intestine fluids are analyzed, and the concept of simulation is introduced through a short, introductory demonstration of how these fluids work. Students learn what simulation means and how it relates to the engineering process, particularly in biomedical engineering. The teacher demo requires vinegar, baking soda, water and aspirin.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Jacob Crosby
Malinda Schaefer Zarske
Date Added:
09/18/2014
Don't Confuse Your Qs!
Rating
0.0 stars

Students investigate the difference between qualitative and quantitative measurements and observations. By describing objects both qualitatively and quantitatively, they learn that both types of information are required for complete descriptions. Students discuss the characteristics of many objects, demonstrating how engineers use both qualitative and quantitative information in product design.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Megan Schroeder
Denise W. Carlson
Drawing Designs in Detail
Rating
0.0 stars

Students practice creating rudimentary detail drawings. They learn how engineers communicate the technical information about their designs using the basic components of detail drawings. They practice creating their own drawings of a three-dimensional block and a special LEGO piece, and then make 3D sketches of an unknown object using only the information provided in its detail drawing.

Author:
TeachEngineering.org
Integrated Teaching and Learning Program,
Benjamin S. Terry, Brandi Briggs, Stephanie Rivale, Denise W. Carlson
Ecology at Work
Rating
0.0 stars

Students learn how rooftop gardens help the environment and the lives of people, especially in urban areas. They gain an understanding of how plants reduce the urban heat island effect, improve air quality, provide agriculture space, reduce energy consumption and increase the aesthetic quality of cities. This draws upon the science of heat transfer (conduction, convection, radiation, materials, color) and ecology (plants, shade, carbon dioxide, photosynthesis), and the engineering requirements for rooftop gardens. In the associated activity, students apply their scientific knowledge to model and measure the effects of green roofs.

Author:
Carleigh Samson, Stephanie Rivale, Denise W. Carlson
Integrated Teaching and Learning Program, College of Engineering, University of Colorado at Boulder,
Edible Rovers
Rating
0.0 stars

Students act as Mars exploratory rover engineers. They evaluate rover equipment options and determine what parts fit in a provided NASA budget. With a given parts list, teams use these constraints to design for their rover. The students build and display their edible rover at a concluding design review.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Geoffrey Hill
Denise W. Carlson
Daria Kotys-Schwartz
Chris Yakacki
Edible Rovers – High School
Rating
0.0 stars

Students act as Mars exploratory rover engineers, designing, building and displaying their edible rovers to a design review. To begin, they evaluate rover equipment and material options to determine which parts might fit in their given NASA budget. With provided parts and material lists, teams analyze their design options and use their findings to design their rovers.

Author:
Janet Yowell
Malinda Schaefer Zarske
Geoffrey Hill
Ben Sprague
Denise W. Carlson
Daria Kotys-Schwartz
Integrated Teaching and Learning Program and Laboratory,
Chris Yakacki
Energy Conservation
Read the Fine Print
Rating
0.0 stars

Students are introduced to the idea that energy use impacts the environment and our wallets. They discuss different types of renewable and nonrenewable energy sources, as well as the impacts of energy consumption. Through a series of activities, students understand how they use energy and how it is transformed from one type to another. They learn innovative ways engineers conserve energy and how energy can be conserved in their homes.

Subject:
Applied Science
Engineering
Environmental Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Natalie Mach
Sharon D. Perez-Suarez
Date Added:
09/18/2014