Updating search results...

Search Resources

50 Results

View
Selected filters:
  • atmosphere
Turbulence in Geophysical Systems, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from the fine structure to planetary scale motions. The regimes of turbulence include homogeneous flows in two and three dimensions, geostrophic motions, shear flows, convection, boundary layers, stably stratified flows, and internal waves.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Ferrari, Raffaele
Flierl, Glenn
Legg, Sonya
Date Added:
01/01/2004
Turbulence in the Ocean and Atmosphere, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents the phenomena, theory, and modeling of turbulence in the Earth's oceans and atmosphere. The scope ranges from centimeter to planetary scale motions. The regimes of turbulence include homogeneous isotropic three dimensional turbulence, convection, quasi-geotropic turbulence, shallow water turbulence, baroclinic turbulence, macro turbulence in the ocean and atmosphere.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Ferrari, Raffaele
Date Added:
01/01/2007
Wave Motion in the Ocean and the Atmosphere, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Rizzoli, Paola
Date Added:
01/01/2008
Weather Basics
Read the Fine Print
Rating
0.0 stars

Students are introduced to the basics of the Earth's weather. Concepts include fundamental causes of common weather phenomena such as temperature changes, wind, clouds, rain and snow. The different factors that affect the weather and the instruments that measure weather data are also addressed.

Subject:
Applied Science
Atmospheric Science
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Glen Sirakavit
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Marissa Forbes
Date Added:
09/18/2014
Weather Watchers
Rating
0.0 stars

Students are introduced to some essential meteorology concepts so they more fully understand the impact of meteorological activity on air pollution control and prevention. First, they develop an understanding of the magnitude and importance of air pressure. Next, they build a simple aneroid barometer to understand how air pressure information is related to weather prediction. Then, students explore the concept of relative humidity and its connection to weather prediction. Finally, students learn about air convection currents and temperature inversions. In an associated literacy activity, students learn how scientific terms are formed using Latin and Greek roots, prefixes and suffixes, and are introduced to the role played by metaphor in language development. Note: Some of these activities can be conducted simultaneously with the air quality activity (What Color Is Your Air Today?) of Air Pollution unit, Lesson 1.

Author:
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Integrated Teaching and Learning Program,
Amy Kolenbrander
Denise Carlson
Weather and Atmosphere
Rating
0.0 stars

In this unit, students learn the basics about weather and the atmosphere. They investigate materials engineering as it applies to weather and the choices available to us for clothing to counteract the effects of weather. Students have the opportunity to design and analyze combinations of materials for use in specific weather conditions. In the next lesson, students also are introduced to air masses and weather forecasting instrumentation and how engineers work to improve these instruments for atmospheric measurements on Earth and in space. Then, students learn the distinguishing features of the four main types of weather fronts that accompany high and low pressure air masses and how those fronts are depicted on a weather map. During this specific lesson, students learn different ways that engineers help with storm prediction, analysis and protection. In the final lesson, students consider how weather forecasting plays an important part in their daily lives by learning about the history of weather forecasting and how improvements in weather technology have saved lives by providing advance warning of natural disasters.

Author:
Integrated Teaching and Learning Program,
See individual lessons and activities.
What Color is Your Air Today?
Rating
0.0 stars

Students develop awareness and understanding of the daily air quality using the Air Quality Index (AQI) listed in the newspaper. They explore what engineers can do to help reduce poor air quality.

Author:
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Integrated Teaching and Learning Program,
Amy Kolenbrander
Denise Carlson
Daria Kotys-Schwartz
What's Air Got to Do with It?
Rating
0.0 stars

Students are introduced to the concepts of air pollution and air quality. The three lesson parts focus on the prerequisites for understanding air pollution. First, students use M&Ms to create a pie graph that expresses their understanding of the composition of air. Next, students watch and conduct several simple experiments to develop an understanding of the properties of air (it has mass, it takes up space, it can move, it exerts pressure, it can do work). Finally, students develop awareness and understanding of the daily air quality using the Air Quality Index (AQI) listed in the newspaper. In an associated literacy activity, students explore the environmental history timeline.

Author:
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Integrated Teaching and Learning Program,
Denise W. Carlson
Amy Kolenbrander
What's Hiding in the Air?
Rating
0.0 stars

Students develop an understanding of the effects of invisible air pollutants with a rubber band and hanger air test and a bean plant experiment. They also learn about methods of reducing invisible air pollutants.

Author:
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Integrated Teaching and Learning Program,
Amy Kolenbrander
Sharon Perez
Denise Carlson
You've Got to See It to Believe It!
Rating
0.0 stars

Students develop an understanding of visible air pollutants with an incomplete combustion demonstration, a "smog in a jar" demonstration, building simple particulate matter collectors, and exploration of engineering roles related to air pollution. In an associated literacy activity, students learn basic marketing concepts and techniques, and the principles of comparative analysis, while creating an advertisement for a hybrid vehicle. Note: You may want to set up the activities for Air Pollution unit, Lessons 2 and 3, simultaneously as they require extended data collection time and can share test sites.

Author:
Janet Yowell
Malinda Schaefer Zarske
Natalie Mach
Integrated Teaching and Learning Program,
Amy Kolenbrander
Denise Carlson