Updating search results...

Search Resources

107 Results

View
Selected filters:
  • biomedical
How Effective Is Your Sunscreen?
Rating
0.0 stars

Student teams design and conduct quality-control experiments to test the reliability of several ultraviolet protection factors. Students use UV-detecting beads in their experimental designs to test the effectiveness of various types of sunscreens and sunblock. For example, they might examine zinc oxide nanoparticles versus traditional organic sun protection factors. UV intensity is quantitatively measured by UVA and UVB Vernier sensors, and students record and graph their results. By designing and conducting this experiment, students compare various substances, while learning about quality control.

Author:
VU Bioengineering RET Program, School of Engineering, Vanderbilt University,
Michelle Bell, Amber Spolarich
If You're Not Part of the Solution, You're Part of the Precipitate!
Rating
0.0 stars

Students continue the research begun in the associated lesson as if they were biomedical engineers working for a pharmaceutical company. Groups each perform a simple chemical reaction (to precipitate solid calcium out of solution) to observe what may occur when Osteopontin levels drop in the body. With this additional research, students determine potential health complications that might arise from a new drug that could reduce inflammatory pain in many patients, improving their quality of life. The goal of this activity is to illustrate biomedical engineering as medical problem solving, as well as emphasize the importance of maintaining normal body chemistry.

Author:
Bio-Inspired Technology and Systems (BITS) RET,
Angela D. Kolonich
Inside the DNA
Rating
0.0 stars

Students conduct their own research to discover and understand the methods designed by engineers and used by scientists to analyze or validate the molecular structure of DNA, proteins and enzymes, as well as basic information about gel electrophoresis and DNA identification. In this computer-based activity, students investigate particular molecular imaging technologies, such as x-ray, atomic force microscopy, transmission electron microscopy, and create short PowerPoint presentations that address key points. The presentations include their own explanations of the difference between molecular imaging and gel electrophoresis.

Author:
Mircea Ionescu
Myla Van Duyn
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Intraocular Pressure Sensor Design Challenge
Rating
0.0 stars

Acting as if they are biomedical engineers, students design and print 3D prototypes of pressure sensors that measure the pressure of the eyes of people diagnosed with glaucoma. After completing the tasks within the associated lesson, students conduct research on pressure gauges, apply their understanding of radio-frequency identification (RFID) technology and its components, iterate their designs to make improvements, and use 3D software to design and print 3D prototypes. After successful 3D printing, teams present their models to their peers. If a 3D printer is not available, use alternate fabrication materials such as modeling clay, or end the activity once the designs are complete.

Author:
Janelle Orange
Robotics Engineering for Better Life and Sustainable Future RET, College of Engineering, Michigan State University,
Kidney Stone Crystallization
Rating
0.0 stars

Students learn how crystallization and inhibition occur by examining calcium oxalate crystals with and without inhibitors that are capable of altering crystallization. Kidney stones are composed of calcium oxalate crystals, and engineers and doctors experiment with these crystals to determine how growth is affected when a potential drug is introduced. Students play the role of engineers by trying to determine which inhibitor would be the best for blocking crystallization.

Author:
Andrea Lee, Megan Ketchum
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs, University of Houston,
Let the Blood Flow
Rating
0.0 stars

Students work as biomedical engineers to find liquid solutions that can clear away polyvinyl acetate polymer "blood clots" in model arteries (made of clear, flexible tubing). Teams create samples of the "blood clot" polymer with different concentrations to discover the concentration of the model clot and then test a variety of liquids to determine which most effectively breaks down the model blood clot. Students learn the importance of the testing phase in the engineering design process, because they are only given one chance to present the team's solution and apply it to the model blood clot.

Author:
Science and Engineering of the Environment of Los Angeles (SEE-LA) GK-12 Program,
Azim Laiwalla, Ann McCabe, Carleigh Samson
Living with Your Liver
Rating
0.0 stars

Students learn the function of the liver and how biomedical engineers can use liver regeneration to help people. Students test the effects of toxic chemicals on a beef liver by adding hydrogen peroxide to various liver and salt solutions. They observe, record and graph their results.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Megan Schroeder
Denise W. Carlson
MRI Safety Grand Challenge
Rating
0.0 stars

Students are given an engineering challenge: A nearby hospital has just installed a new magnetic resonance imaging facility that has the capacity to make 3D images of the brain and other body parts by exposing patients to a strong magnetic field. The hospital wishes for its entire staff to have a clear understanding of the risks involved in working near a strong magnetic field and a basic understanding of why those risks occur. Your task is to develop a presentation or pamphlet explaining the risks, the physics behind those risks, and the safety precautions to be taken by all staff members. This 10-lesson/4-activity unit was designed to provide hands-on activities to teach end-of-year electricity and magnetism topics to a first-year accelerated or AP physics class. Students learn about and then apply the following science concepts to solve the challenge: magnetic force, magnetic moments and torque, the Biot-Savart law, Ampere's law and Faraday's law. This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn.

Author:
VU Bioengineering RET Program,
Meghan Murphy
Eric Appelt
Making Model Microfluidic Devices Using JELL-O
Rating
0.0 stars

Students create large-scale models of microfluidic devices using a process similar to that of the PDMS and plasma bonding that is used in the creation of lab-on-a-chip devices. They use disposable foam plates, plastic bendable straws and gelatin dessert mix. After the molds have hardened overnight, they use plastic syringes to inject their model devices with colored fluid to test various flow rates. From what they learn, students are able to answer the challenge question presented in lesson 1 of this unit by writing individual explanation statements.

Author:
TeachEngineering.org
Michelle Woods (primary author)
VU Bioengineering RET Program,
Measuring Our Muscles
Rating
0.0 stars

Student teams build model hand dynamometers used to measure grip strengths of people recovering from sports injuries. They use their models to measure how much force their classmates muscles are capable of producing, and analyze the data to determine factors that influence a person's grip strength. They use this information to produce a recommendation of a hand dynamometer design for a medical office specializing in physical therapy. They also consider the many other ways grip strength data is used by engineers to design everyday products.

Author:
Malinda Schaefer Zarske
Jake Lewis
Integrated Teaching and Learning Program,
Denise W. Carlson
Measuring Viscosity
Rating
0.0 stars

Students calculate the viscosity of various household fluids by measuring the amount of time it takes marble or steel balls to fall given distances through the liquids. They experience what viscosity means, and also practice using algebra and unit conversions.

Author:
TeachEngineering.org
Integrated Teaching and Learning Program,
Michael A. Soltys
Mechanics of Elastic Solids
Rating
0.0 stars

After conducting the associated activity, students are introduced to the material behavior of elastic solids. Engineering stress and strain are defined and their importance in designing devices and systems is explained. How engineers measure, calculate and interpret properties of elastic materials is addressed. Students calculate stress, strain and modulus of elasticity, and learn about the typical engineering stress-strain diagram (graph) of an elastic material.

Author:
TeachEngineering.org
Marissa H. Forbes
Integrated Teaching and Learning Program,
Brandi N. Briggs
Medical Instrumentation
Read the Fine Print
Rating
0.0 stars

Students will discuss the special considerations that must be made when dealing with the human body, and will gain an appreciation for the amazing devices that have improved our quality of life. They will also explore how " čĎForm Fits Function'. This lesson should serve as a starting point for students to begin to ponder how the medical devices in their everyday lives actually work.

Subject:
Applied Science
Engineering
Health, Medicine and Nursing
Material Type:
Activity/Lab
Lesson Plan
Author:
Emily McDowell
Techtronics Program,
Date Added:
09/18/2014
Microfluidic Devices and Flow Rate
Rating
0.0 stars

Students obtain a basic understanding of microfluidic devices, how they are developed and their uses in the medical field. After conducting the associated activity, they watch a video clip and learn about flow rate and how this relates to the speed at which medicine takes effect in the body. What they learn contributes to their ongoing objective to answer the challenge question presented in lesson 1 of this unit. They conclude by solving flow rate problems provided on a worksheet.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Michelle Woods
Model Heart Valves
Rating
0.0 stars

Students use provided materials to design and build prototype artificial heart valves. Their functioning is demonstrated using water to simulate the flow of blood through the heart. Upon completion, teams demonstrate their fully functional prototypes to the rest of the class, along with a pamphlet that describes the device and how it works.

Author:
Carleigh Samson
Michael Duplessis
VU Bioengineering RET Program,
Janet Yowell
Muscles, Oh My!
Rating
0.0 stars

Students are introduced to the field of biomechanics and how the muscular system produces human movement. They learn the importance of the muscular system in our daily lives, why it is important to be able to repair muscular system injuries and how engineering can help.

Author:
Malinda Schaefer Zarske
Jake Lewis
Integrated Teaching and Learning Program,
Denise W. Carlson
Jonathan MacNeil
My Mechanical Ear Can Hear!
Rating
0.0 stars

Students are introduced to various types of hearing impairments and the types of biomedical devices that engineers have designed to aid people with this physical disability.

Author:
Emily Weller
Malinda Schaefer Zarske
Sara Born
Integrated Teaching and Learning Program,
Denise W. Carlson
Jessica Todd
Lesley Herrmann
NanoTech: Insights into a Nano-Sized World
Rating
0.0 stars

Through two lessons and four activities, students learn about nanotechnology, its extreme smallness, and its vast and growing applications in our world. Embedded within the unit is a broader introduction to the field of material science and engineering and its vital role in nanotechnology advancement. Engaging mini-lab activities on ferrofluids, quantum dots and gold nanoparticles introduce students to specific fields within nanoscience and help them understand key concepts as the basis for thinking about engineering and everyday applications that use next-generation technology nanotechnology.

Author:
See individual lessons and activities.
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Nanotechnology and Cancer Treatments
Rating
0.0 stars

Students learn about the biomedical use of nanoparticles in the detection and treatment of cancer, including the use of quantum dots and lasers that heat-activate nanoparticles. They also learn about electrophoresis a laboratory procedure that uses an electric field to move tiny particles through a channel in order to separate them by size. They complete an online virtual mini-lab, with accompanying worksheet, to better understand gel electrophoresis. This prepares them for the associated activity to write draft research proposals to use nanoparticles to protect against, detect or treat skin cancer.

Author:
VU Bioengineering RET Program, School of Engineering, Vanderbilt University,
Michelle Bell, Amber Spolarich
Nerve Racking
Rating
0.0 stars

This lesson describes the function and components of the human nervous system. It helps students understand the purpose of our brain, spinal cord, nerves and the five senses. How the nervous system is affected during spaceflight is also discussed in this lesson.

Author:
Emily Weller
Janet Yowell
Malinda Schaefer Zarske
Sara Born
Integrated Teaching and Learning Program,
Jessica Todd
Denali Lander
Teresa Ellis