Updating search results...

Search Resources

69 Results

View
Selected filters:
  • brain
Mirrorly a Window
Rating
0.0 stars

In this activity about light and reflection, learners discover that what you see is often affected by what you expect to see. Learners hold on to a device consisting of two mirrors glued back to back to each other with a dowel handle on either side. While looking at one side of the mirror, learners move one hand on the other side of the mirror. They will be surprised as their brain is fooled into thinking that the image it sees in the mirror is actually their other hand. Learners can participate in assembling the mirror device or use a pre-assembled one. This resource also includes a simpler version of this activity in the "etcetera" section at the bottom of the guide.

Author:
The Exploratorium
California Department of Education
NEC Foundation of America
National Science Foundation
Molecular Mapping of Movement-Associated Areas in the Avian Brain: A Motor Theory for Vocal Learning Origin
Rating
0.0 stars

Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.

Author:
Haruhito Horita
Henrik Mouritsen
Manuela Zapka
Miriam Rivas
Gesa Feenders
Kazuhiro Wada
Miriam Liedvogel
Erina Hara
Movement Task Using Sensors - Humans and Robots
Rating
0.0 stars

This activity helps students understand the significance of programming and also how the LEGO MINDSTORMS(TM) NXT robot's sensors assist its movement and make programming easier. Students compare human senses to robot sensors, describing similarities and differences.

Author:
GK-12 Program, Computational Neurobiology Center, College of Engineering,
Ajay Nair
Ashwin Mohan
Satish Nair
Charlie Franklin
Music by Touch
Rating
0.0 stars

Students' understanding of how robotic touch sensors work is reinforced through a hands-on design challenge involving LEGO MINDSTORMS(TM) NXT intelligent bricks, motors and touch sensors. They learn programming skills and logic design in parallel as they program robot computers to play sounds and rotate a wheel when a touch sensor is pressed, and then produce different responses if a different touch sensor is activated. Students see first-hand how robots can take input from sensors and use it to make decisions to move as programmed, including simultaneously moving a motor and playing music. A PowerPoint® presentation and pre/post quizzes are provided.

Author:
Trisha Chaudhary, Pranit Samarth, Satish S. Nair
GK-12 Program, Computational Neurobiology Center,
Nerve Racking
Rating
0.0 stars

This lesson describes the function and components of the human nervous system. It helps students understand the purpose of our brain, spinal cord, nerves and the five senses. How the nervous system is affected during spaceflight is also discussed in this lesson.

Author:
Emily Weller
Janet Yowell
Malinda Schaefer Zarske
Sara Born
Integrated Teaching and Learning Program,
Jessica Todd
Denali Lander
Teresa Ellis
Neurobiology
Rating
0.0 stars

This course is designed to provide an overview of neurobiology - the biology of our nervous system, from the spinal cord to the brain, and everything in between. After a general introduction and review of pertinent scientific concepts, the student will take a look at cellular signaling, neuron development and plasticity, and the larger systems of neurobiology, such as the sensory system, motor system, and the complex phenomena of memory and emotion. Upon successful completion of this course, the student will be able to: demonstrate an understanding of the basic biochemical concepts pertinent to cell biology; identify the basic structure of the nerve cell, the various functions of different components of the nerve cells, and different types of nerve cells; describe various different nervous systems; describe the structure and function of the nervous systems; explain how nerve cells propagate and transmit nervous impulses; describe select diseases caused by malfunctioning or nerve cell death in parts of the nervous system; explain how the nervous system responds to nerve damage or death and therapeutic measures; describe how the nervous system is formed in the embryo and identify the role of various genes and hormonal regulators in that development process; describe the structure and function of the brain and spinal cord; describe the structure and function of the somatic sensory system and the motor system. (Biology 303)

Our Bodies Have Computers and Sensors
Rating
0.0 stars

Students learn about the human body's system components, specifically its sensory systems, nervous system and brain, while comparing them to robot system components, such as sensors and computers. The unit's life sciences-to-engineering comparison is accomplished through three lessons and five activities. The important framework of "stimulus-sensor-coordinator-effector-response" is introduced to show how it improves our understanding the cause-effect relationships of both systems. This framework reinforces the theme of the human body as a system from the perspective of an engineer. This unit is the second of a series, intended to follow the Humans Are Like Robots unit.

Author:
GK-12 Program, Computational Neurobiology Center,
Sachin Nair, Charlie Franklin, Marianne Catanho, Satish Nair
Panoptes and the Bionic Eye
Rating
0.0 stars

Vision is the primary sense of many animals and much is known about how vision is processed in the mammalian nervous system. One distinct property of the primary visual cortex is a highly organized pattern of sensitivity to location and orientation of objects in the visual field. But how did we learn this? An important tool is the ability to design experiments to map out the structure and response of a system such as vision. In this activity, students learn about the visual system and then conduct a model experiment to map the visual field response of a Panoptes robot. (In Greek mythology, Argus Panoptes was the "all-seeing" watchman giant with 100 eyes.) A simple activity modification enables a true black box experiment, in which students do not directly observe how the visual system is configured, and must match the input to the output in order to reconstruct the unseen system inside the box.

Author:
Michael Trumpis, Shingi Middelmann, Gisselle Cunningham
AMPS GK-12 Program, Polytechnic Institute of New York University,
Processes on Complex Networks
Rating
0.0 stars

Building on their understanding of graphs, students are introduced to random processes on networks. They walk through an illustrative example to see how a random process can be used to represent the spread of an infectious disease, such as the flu, on a social network of students. This demonstrates how scientists and engineers use mathematics to model and simulate random processes on complex networks. Topics covered include random processes and modeling disease spread, specifically the SIR (susceptible, infectious, resistant) model.

Author:
TeachEngineering.org
Complex Systems Science Laboratory,
Debbie Jenkinson and Susan Frennesson, The Pine School, Stuart, FL
Garrett Jenkinson and John Goutsias, The Johns Hopkins University, Baltimore, MD
Pupillary Response & Test Your Reaction Time
Rating
0.0 stars

Students observe and test their reflexes, including the (involuntary) pupillary response and (voluntary) reaction times using their dominant and non-dominant hands, as a way to further explore how reflexes occur in humans. They gain insights into how our bodies react to stimuli, and how some reactions and body movements are controlled automatically, without conscious thought. Using information from the associated lesson about how robots react to situations, including the stimulus-to-response framework, students see how engineers use human reflexes as examples for controls for robots.

Author:
GK-12 Program, Computational Neurobiology Center, College of Engineering,
Marianne Catanho, Sachin Nair, Charlie Franklin, Satish Nair
Reflecting on Human Reflexes
Rating
0.0 stars

Students learn about human reflexes, how our bodies react to stimuli and how some body reactions and movements are controlled automatically, without thinking consciously about the movement or responses. In the associated activity, students explore how reflexes work in the human body by observing an involuntary human reflex and testing their own reaction times using dominant and non-dominant hands. Once students understand the stimulus-to-response framework components as a way to describe human reflexes and reactions in certain situations, they connect this knowledge to how robots can be programmed to conduct similar reactions.

Author:
GK-12 Program, Computational Neurobiology Center,
Marianne Catanho, Sachin Nair, Charlie Franklin, Satish Nair
Robot Sensors and Sound
Rating
0.0 stars

Students continue to build a rigorous background in human sensors and their engineering equivalents by learning about electronic touch, light, sound and ultrasonic sensors that measure physical quantities somewhat like eyes, ears and skin. Specifically, they learn about microphones as one example of sound sensors, how sounds differ (intensity, pitch) and the components of sound waves (wavelength, period, frequency, amplitude). Using microphones connected to computers running (free) Audacity® software, student teams experiment with machine-generated sounds and their own voices and observe the resulting sound waves on the screen, helping them to understand that sounds are waves. Students take pre/post quizzes, complete a worksheet and watch two short online videos about "seeing" sound.

Author:
Srijith Nair, Pranit Samarth, Satish S. Nair
GK-12 Program, Computational Neurobiology Center,
Sound from Left or Right?
Rating
0.0 stars

Why do humans have two ears? How do the properties of sound help with directional hearing? Students learn about directional hearing and how our brains determine the direction of sounds by the difference in time between arrival of sound waves at our right and left ears. Student pairs use experimental set-ups that include the headset portions of stethoscopes to investigate directional hearing by testing each other's ability to identify the direction from which sounds originate.

Author:
GK-12 Program, Computational Neurobiology Center, College of Engineering,
Marianne Catanh, Sachin Nair, Charlie Franklin, Satish Nair
Studies in Poetry - British Poetry and the Sciences of the Mind, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Extensive reading of works by a few major poets. Emphasizes the evolution of each poet's work and the questions of poetic influence and literary tradition. Instruction and practice in oral and written communication. Topic for Fall: Does Poetry Matter? Topic for Spring: Gender and Lyric Poetry.

Subject:
Anatomy/Physiology
Arts and Humanities
Life Science
Literature
Psychology
Social Science
Material Type:
Full Course
Textbook
Author:
Jackson, Noel
Date Added:
01/01/2004
That's Hot! Robot Brain Programming
Rating
0.0 stars

With the challenge to program computers to mimic the human reaction after touching a hot object, students program LEGO® robots to "react" and move back quickly once their touch sensors bump into something. By relating human senses to electronic sensors used in robots, students see the similarities between the human brain and its engineering counterpart, the computer, and come to better understand the functioning of sensors in both applications. They apply an understanding of the human "stimulus-sensor-coordinator-effector-response" framework to logically understand human and robot actions.

Author:
GK-12 Program, Computational Neurobiology Center, College of Engineering,
Sachin Nair, Charlie Franklin, Satish Nair
Understanding Communication with a Robot
Rating
0.0 stars

Student pairs first act out the instructions a robot is given with one person providing instructions and the other person following the instructions. This activity helps students understand how robots are programmed and with what type of precision commands must be given. Then students program LEGO MINDSTORMS(TM) NXT taskbots to navigate a simple maze. The goal is to teach students that robot computers simply follow directions exactly as they are given, thus one must be very clear and logical with programming instructions.

Author:
GK-12 Program, Computational Neurobiology Center, College of Engineering,
Ajay Nair
Understanding Movement in Humans and Robots
Rating
0.0 stars

This activity helps students understand how a LEGO MINDSTORMS(TM) NXT robot moves using motors and wheels. Then students relate the concepts of decision-making actuation and motion in humans to their parallels in mechanized robots, and understand the common themes associated with movement.

Author:
GK-12 Program, Computational Neurobiology Center, College of Engineering,
Ajay Nair
Ashwin Mohan
Satish Nair
Charlie Franklin
What Is a Motor? How Does a Rotation Sensor Work?
Rating
0.0 stars

Students learn about electric motors and rotational sensors. They learn that motors convert electrical energy to mechanical energy and typically include rotational sensors to enable distance measuring. They also learn the basics about gear trains and gear ratios. Students create a basic program using the LEGO MINDSTORMS(TM) NXT interface to control a motor to move a small robot. Then, through a 10-minute mini-activity, they make measurements and observations to test a LEGO rotation sensor's ability to measure distance in rotations. This prepares them for the associated activity during which they calculate how many wheel rotations are needed to travel a distance. A PowerPoint® presentation, worksheet and pre/post quizzes are provided.

Author:
GK-12 Program, Computational Neurobiology Center,
Nishant Sinha, Pranit Samarth, Satish S. Nair
What Is a Sensor?
Rating
0.0 stars

Students gain a rigorous background in the primary human "sensors," as preparation for comparing them to some electronic equivalents in the associated activity. A review of human vision, hearing, smell, taste and touch, including the anatomies and operational principles, is delivered through a PowerPoint® presentation. Students learn the concept of "stimulus-sensor-coordinator-effector-response" to describe the human and electronic sensory processes. Student pairs use blindfolds, paper towels and small candies in a taste/smell sensory exercise. They take pre/post quizzes and watch two short online videos. Concepts are further strengthened by conducting the associated activity the following day, during which they learn about electronic touch, light, sound and ultrasonic sensors and then "see" sound waves while using microphones connected to computers running (free) Audacity® software.

Author:
Srijith Nair, Pranit Samarth, Satish S. Nair
GK-12 Program, Computational Neurobiology Center,