Updating search results...

Search Resources

930 Results

View
Selected filters:
  • Physics
Checking the Surf
Rating
0.0 stars

This lesson introduces the concepts of wavelength and amplitude in transverse waves. In the associated activity, students will use ropes and their bodies to investigate different wavelengths and amplitudes.

Author:
Janet Yowell
Abigail Watrous
Integrated Teaching and Learning Program,
Frank Burkholder
Circles of Magnetism I
Rating
0.0 stars

In this activity related to magnetism and electricity, learners create a magnetic field that's stronger than the Earth's magnetic field. Learners use electric currents that are stronger than the field of the Earth to move a compass needle. The assembly is made using a lantern battery, heavy wire, a Tinkertoy㢠set, and poster board and utilizes 4-6 small compasses and 2 electrical lead wires.

Author:
The Exploratorium
California Department of Education
NEC Foundation of America
National Science Foundation
Circuits
Read the Fine Print
Rating
0.0 stars

Students are introduced to several key concepts of electronic circuits. They learn about some of the physics behind circuits, the key components in a circuit and their pervasiveness in our homes and everyday lives. Students learn about Ohm's Law and how it is used to analyze circuits.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Lauren Cooper
Malinda Schaefer Zarske
TeachEngineering.org
Tyler Maline
Date Added:
09/18/2014
Circuits and Magnetic Fields
Rating
0.0 stars

Students use the same method as in the activity from lesson 2 of this unit to explore the magnetism due to electric current instead of a permanent magnet. Students use a compass and circuit to trace the magnetic field lines induced by the electric current moving through the wire. Students develop an understanding of the effect of the electrical current on the compass needle through the induced magnetic field and understand the complexity of a three dimensional field system.

Author:
VU Bioengineering RET Program,
Justin Montenegro, Glencliff High School, Nashville
A Classic Case of Serial Murder: Forensics Meets Photonics
Rating
0.0 stars

In this case study, a newly appointed medical examiner uncovers an unusual trend in drowning cases, which she suspects may be the work of a serial murderer. To prove that she is right, she must rely on instrumentation designed and tested by a team of students from the local university. Students read the case, then design and build a device for the detection of blood stains. The case was developed for use in an undergraduate laboratory course sequence in photonics for junior and senior level students. It would be suitable for any undergraduate course in physics, chemistry, or electrical engi eering that covers topics in optics, photonics, or spectroscopy.

Author:
Alan Cheville
Karen Altendorf
Classical Mechanics: A Computational Approach, Fall 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" We will study the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. We will use computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration. We will consider the following topics: the Lagrangian formulation; action, variational principles, and equations of motion; Hamilton's principle; conserved quantities; rigid bodies and tops; Hamiltonian formulation and canonical equations; surfaces of section; chaos; canonical transformations and generating functions; Liouville's theorem and PoincarĚŠ integral invariants; PoincarĚŠ-Birkhoff and KAM theorems; invariant curves and cantori; nonlinear resonances; resonance overlap and transition to chaos; properties of chaotic motion. Ideas will be illustrated and supported with physical examples. We will make extensive use of computing to capture methods, for simulation, and for symbolic analysis."

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Sussman, Gerald
Wisdom, Jack
Date Added:
01/01/2008
The Claw
Rating
0.0 stars

Students learn about gear ratios and power by operating toy mechanical cranes of differing gear ratios. They attempt to pick up objects with various masses to witness how much power must be applied to the system to oppose the force of gravity. They learn about the concept of gear ratio and practice calculating gear ratios on worksheets, discovering that smaller gear ratios are best for picking objects up quickly, and larger gear ratios make it easier to lift heavy objects.

Author:
AMPS GK-12 Program,
TeachEngineering.org
Marissa H. Forbes
Zachary Nishino
Clean Energy: Hydropower
Rating
0.0 stars

Hydropower generation is introduced to students as a common purpose and benefit of constructing dams. Through an introduction to kinetic and potential energy, students come to understand how a dam creates electricity. They also learn the difference between renewable and non-renewable energy.

Author:
Sara Born
Kristin Field
Integrated Teaching and Learning Program,
Denise W. Carlson
Michael Bendewald
Clean Up This Mess
Rating
0.0 stars

Students are challenged to design a method for separating steel from aluminum based on magnetic properties as is frequently done in recycling operations. To complicate the challenge, the magnet used to separate the steel must be able to be switched off to allow for the recollection of the steel. Students must ultimately design, test, and present an effective electromagnet.

Author:
TeachEngineering.org
Justin Montenegro , Glencliff High School, Nashville
VU Bioengineering RET Program,
Cold War Science, Fall 2008
Rating
0.0 stars

" This seminar examines the history and legacy of the Cold War on American science. It explores scientist's new political roles after World War II, ranging from elite policy makers in the nuclear age to victims of domestic anti Communism. It also examines the changing institutions in which the physical sciences and social sciences were conducted during the postwar decades, investigating possible epistemic effects on forms of knowledge. The subject closes by considering the place of science in the post-Cold War era."

Author:
Kaiser, David
College Physics
Rating
0.0 stars

This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems.

Author:
Paul Peter Urone
Kim Dirks
Manjula Sharma
Roger Hinrichs
College Physics
Rating
0.0 stars

Published by OpenStax College, this introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. College Physics includes learning objectives, concept questions, links to labs and PhET simulations, and ample practice opportunities to solve traditional physics application problems.

Author:
Paul Peter Urone
Kim Dirks
Manjula Sharma
Roger Hinrichs
Collisions and Momentum: Bouncing Balls
Read the Fine Print
Rating
0.0 stars

As a continuation of the theme of potential and kinetic energy, this lesson introduces the concepts of momentum, elastic and inelastic collisions. Many sports and games, such as baseball and ping-pong, illustrate the ideas of momentum and collisions. Students explore these concepts by bouncing assorted balls on different surfaces and calculating the momentum for each ball.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014
Colored Shadows
Rating
0.0 stars

In this optics activity, learners discover that not all shadows are black. Learners explore human color perception by using colored lights to make additive color mixtures. With three colored lights, learners can make shadows of seven different colors. They can also explore how to make shadows of individual colors, including black. Use this activity demonstrate how receptors in the retina of the eye work to see color.

Author:
The Exploratorium
California Department of Education
NEC Foundation of America
National Science Foundation
Compound Semiconductor Devices, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Physics, modeling, application, and technology of compound semiconductors (primarily III-Vs) in electronic, optoelectronic, and photonic devices and integrated circuits. Topics: properties, preparation, and processing of compound semiconductors; theory and practice of heterojunctions, quantum structures, and pseudomorphic strained layers; metal-semiconductor field effect transistors (MESFETs); heterojunction field effect transistors (HFETs) and bipolar transistors (HBTs); and optoelectronic devices.

Subject:
Applied Science
Computer Science
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Fonstad, Clifton
Date Added:
01/01/2003
Compressible Flow, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Harris, Wesley Leroy
Date Added:
01/01/2003
Conceptual Physics
Rating
0.0 stars

For a semester-length course, all seven chapters can be covered. For a shorter course, the book is designed so that chapters 1, 2, and 5 are the only ones that are required for continuity; any of the others can be included or omitted at the instructor’s discretion, with the only constraint being that chapter 6 requires chapter 4.

Author:
Benjamin Crowell, Fullerton College
Conduction, Convection and Radiation
Rating
0.0 stars

With the help of simple, teacher-led demonstration activities, students learn the basic concepts of heat transfer by means of conduction, convection, and radiation. Students then apply these concepts as they work in teams to solve two problems. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately body temperature, and the other problem is to cause an identical soda can of warm water to cool as much as possible during the same thirty-minute time interval. Students design their solutions using only common, everyday materials. They record the water temperatures in their two soda cans every five minutes, and prepare line graphs in order to visually compare their results to the temperature of an unaltered control can of water.

Author:
Engineering K-PhD Program,
Mary R. Hebrank (project writer and consultant ), Pratt School of Engineering, Duke University
Conductivity
Rating
0.0 stars

Students make a simple conductivity tester using a battery and light bulb. They learn the difference between conductors and insulators of electrical energy as they test a variety of materials for their ability to conduct electricity.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Sharon D. Perez-Suarez
Jeff Lyng
Denise Carlson