Updating search results...

Search Resources

6 Results

View
Selected filters:
  • antibiotic
Chronic Infection and Inflammation: What are the Consequences on Your Health?, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course we will explore the new emerging field of pathogen-induced chronic diseases. Work in this field has redefined the causes of some major disorders, such as ulcers. By reading the primary research literature we will learn about the molecular mechanisms through which pathogens cause disease. The diseases that we cover will be introduced with a short patient case study. We will discuss the bacterium Helicobacter pylori and gastric disease, HPV and cervical cancer, hepatitis C virus and liver disease, Epstein-Barr virus and lymphoma, Cytomegalovirus and atherosclerosis, as well as diabetes and multiple sclerosis. We will study technical advances in the fight against microbes and explore future directions for new treatment strategies of chronic infections and inflammation. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Textbook
Author:
Frickel, Eva
Gredmark, Sara
Date Added:
01/01/2007
Feel Better Faster: All about Flow Rate
Rating
0.0 stars

All of us have felt sick at some point in our lives. Many times, we find ourselves asking, "What is the quickest way that I can start to feel better?" During this two-lesson unit, students study that question and determine which form of medicine delivery (pill, liquid, injection/shot) offers the fastest relief. This challenge question serves as a real-world context for learning all about flow rates. Students study how long various prescription methods take to introduce chemicals into our blood streams, as well as use flow rate to determine how increasing a person's heart rate can theoretically make medicines work more quickly. Students are introduced to engineering devices that simulate what occurs during the distribution of antibiotic cells in the body.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Michelle Woods
How Antibiotics Work
Rating
0.0 stars

Students are introduced to a challenge question. Towards answering the question, they generate ideas for what they need to know about medicines and how they move through our bodies, watch a few short videos to gain multiple perspectives, and then learn lecture material to obtain a basic understanding of how antibiotics kill bacteria in the human body. They learn why different forms of medicine (pill, liquid or shot) get into the blood stream at different speeds.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Michelle Woods
Microbiological assay of antibiotics
Rating
0.0 stars

The video describe the microbiological methods used to assay the antibiotics
How to prepare the standard solution for assays
How to prepare the samples used in the assay

Author:
Mohd. Farooq Mansuri
Microbiology - Bacteria Antibiotic Resistance
Rating
0.0 stars


This will look at investigate bacterial resistant to antibiotics basically how some bacteria are resistant to antibiotics and how do they acquire such resistance

Author:
Armando Hasudungan
Widespread Natural Occurrence of Hydroxyurea in Animals
Rating
0.0 stars

Here we report the widespread natural occurrence of a known antibiotic and antineoplastic compound, hydroxyurea in animals from many taxonomic groups.

Hydroxyurea occurs in all the organisms we have examined including invertebrates (molluscs and crustaceans), fishes from several major groups, amphibians and mammals. The species with highest concentrations was an elasmobranch (sharks, skates and rays), the little skate Leucoraja erinacea with levels up to 250 μM, high enough to have antiviral, antimicrobial and antineoplastic effects based on in vitro studies. Embryos of L. erinacea showed increasing levels of hydroxyurea with development, indicating the capacity for hydroxyurea synthesis. Certain tissues of other organisms (e.g. skin of the frog (64 μM), intestine of lobster (138 μM) gills of the surf clam (100 μM)) had levels high enough to have antiviral effects based on in vitro studies. Hydroxyurea is widely used clinically in the treatment of certain human cancers, sickle cell anemia, psoriasis, myeloproliferative diseases, and has been investigated as a potential treatment of HIV infection and its presence at high levels in tissues of elasmobranchs and other organisms suggests a novel mechanism for fighting disease that may explain the disease resistance of some groups. In light of the known production of nitric oxide from exogenously applied hydroxyurea, endogenous hydoxyurea may play a hitherto unknown role in nitric oxide dynamics.

Author:
Bryan J. Reid
James S. Ballantyne
David I. Fraser
Jacob W. Robinson
Emily Hawkins
Pierre H. R. Ouellette
Kyle T. Liu
Michelle Pyle
Andrew Sevier