Updating search results...

Search Resources

31 Results

View
Selected filters:
  • biomedical-engineer
The Artificial Bicep
Rating
0.0 stars

Students learn more about how muscles work and how biomedical engineers can help keep the muscular system healthy. Following the engineering design process, they create their own biomedical device to aid in the recovery of a strained bicep. They discover the importance of rest to muscle recovery and that muscles (just like engineers!) work together to achieve a common goal.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Jonathan MacNeil
Jaime Morales
Automatic Floor Cleaner Computer Program Challenge
Rating
0.0 stars

Students learn more about assistive devices, specifically biomedical engineering applied to computer engineering concepts, with an engineering challenge to create an automatic floor cleaner computer program. Following the steps of the design process, they design computer programs and test them by programming a simulated robot vacuum cleaner (a LEGO® robot) to move in designated patterns. Successful programs meet all the design requirements.

Author:
Jared R. Quinn
Kristen Billiar
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program, Department of Biomedical Engineering,
Terri Camesano
Biomedical Devices for the Eyes
Rating
0.0 stars

Students examine the structure and function of the human eye, learning some amazing features about our eyes, which provide us with sight and an understanding of our surroundings. Students also learn about some common eye problems and the biomedical devices and medical procedures that resolve or help to lessen the effects of these vision deficiencies, including vision correction surgery.

Author:
William Surles
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Lesley Herrmann
Blood Clots, Polymers and Strokes
Rating
0.0 stars

Students are introduced to the circulatory system with an emphasis on the blood clotting process, including coagulation and the formation and degradation of polymers through their underlying atomic properties. They learn about the medical emergency of strokes the loss of brain function commonly due to blood clots including various causes and the different effects depending on the brain location, as well as blood clot removal devices designed by biomedical engineers.

Author:
Science and Engineering of the Environment of Los Angeles (SEE-LA) GK-12 Program,
Azim Laiwalla, Ann McCabe, Carleigh Samson, Victoria Lanaghan
Body Circulation
Rating
0.0 stars

Students are introduced to the circulatory system, the heart, and blood flow in the human body. Through guided pre-reading, during-reading and post-reading activities, students learn about the circulatory system's parts, functions and disorders, as well as engineering medical solutions. By cultivating literacy practices as presented in this lesson, students can improve their scientific and technological literacy.

Author:
Todd Curtis
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
TeachEngineering.org
Jay Shah
Bone Crusher
Rating
0.0 stars

Students use a tension-compression machine (or an alternative bone-breaking setup) to see how different bones fracture differently and with different amounts of force, depending on their body locations. Teams determine bone mass and volume, calculate bone density, and predict fracture force. Then they each test a small animal bone (chicken, turkey, cat) to failure, examining the break to analyze the fracture type. Groups conduct research about biomedical challenges, materials and repair methods, and design repair treatment plans specific to their bones and fracture types, presenting their design recommendations to the class.

Author:
Andrea Lee, Megan Ketchum
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Bone Fractures and Engineering
Rating
0.0 stars

Students learn about the role engineers and engineering play in repairing severe bone fractures. They acquire knowledge about the design and development of implant rods, pins, plates, screws and bone grafts. They learn about materials science, biocompatibility and minimally-invasive surgery.

Author:
Integrated Teaching and Learning Program, College of Engineering,
Todd Curtis, Malinda Schaefer Zarske, Janet Yowell, Denise W. Carlson
Bones! Bones! Bones!
Rating
0.0 stars

After learning, comparing and contrasting the steps of the engineering design process (EDP) and scientific method, students review the human skeletal system, including the major bones, bone types, bone functions and bone tissues, as well as other details about bone composition. Students then pair-read an article about bones and bone growth and compile their notes to summarize the article. Finally, students complete a homework assignment to review the major bones in the human body, preparing them for the associated activities in which they create and test prototype replacement bones with appropriate densities. Two PowerPoint(TM) presentations, pre-/post-test, handout and worksheet are provided.

Author:
Michelle Gallagher, Terri Camesano, Jeanne Hubelbank, Kristen Billiar, Dua Chaker, Carleigh Samson
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program, Department of Biomedical Engineering, Worcester Polytechnic Institute,
Breathe In, Breathe Out
Rating
0.0 stars

Students are introduced to the respiratory system, the lungs and air. They learn about how the lungs and diaphragm work, how air pollution affects lungs and respiratory functions, some widespread respiratory problems, and how engineers help us stay healthy by designing machines and medicines that support respiratory health and function.

Author:
Malinda Schaefer Zarske
Jay Shah
Integrated Teaching and Learning Program,
Denise W. Carlson
Building the Neuron
Rating
0.0 stars

What does the brain look like? As engineers, how can we look at neural networks without invasive surgery? In this activity, students design and build neuron models based on observations made while viewing neurons through a microscope. The models are used to explain how each structure of the neuron contributes to the overall function. Students share their models with younger students and explain what a neuron is, its function, and how engineers use their understanding of the neuron to make devices to activate neurons.

Author:
Janelle Orange
Robotics Engineering for Better Life and Sustainable Future RET,
Clearing a Path to the Heart
Rating
0.0 stars

Following the steps of the engineering design process and acting as biomedical engineers, student teams use everyday materials to design and develop devices and approaches to unclog blood vessels. Through this open-ended design project, they learn about the circulatory system, biomedical engineering, and conditions that lead to heart attacks and strokes.

Author:
Todd Curtis
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Jay Shah
DNA Build
Rating
0.0 stars

Students reinforce their knowledge that DNA is the genetic material for all living things by modeling it using toothpicks and gumdrops that represent the four biochemicals (adenine, thiamine, guanine, and cytosine) that pair with each other in a specific pattern, making a double helix. They investigate specific DNA sequences that code for certain physical characteristics such as eye and hair color. Student teams trade DNA "strands" and de-code the genetic sequences to determine the physical characteristics (phenotype) displayed by the strands (genotype) from other groups. Students extend their knowledge to learn about DNA fingerprinting and recognizing DNA alterations that may result in genetic disorders.

Author:
Janet Yowell
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
Megan Schroeder
Engineering Bones
Read the Fine Print
Rating
0.0 stars

Students extend their knowledge of the skeletal system to biomedical engineering design, specifically the concept of artificial limbs. Students relate the skeleton as a structural system, focusing on the leg as structural necessity. They learn about the design considerations involved in the creation of artificial limbs, including materials and sensors.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Denise W. Carlson
Integrated Teaching and Learning Program,
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Engineering and Empathy: Teaching the Engineering Design Process through Assistive Devices
Rating
0.0 stars

Students follow the steps of the engineering design process (EDP) while learning about assistive devices and biomedical engineering. They first go through a design-build-test activity to learn the steps of the cyclical engineering design process. Then, during the three main activities (7 x 55 minutes each) student teams are given a fictional client statement and follow the EDP steps to design products an off-road wheelchair, a portable wheelchair ramp, and an automatic floor sweeper computer program. Students brainstorm ideas, identify suitable materials and demonstrate different methods of representing solutions to their design problems scale drawings or programming descriptions, and simple models or classroom prototypes.

Author:
Jared R. Quinn
Kristen Billiar
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program, Department of Biomedical Engineering,
Terri Camesano
Engineering and the Human Body
Rating
0.0 stars

This unit covers the broad spectrum of topics that make-up our very amazing human body. Students are introduced to the space environment and learn the major differences between the environment on Earth and that of outer space. The engineering challenges that arise because of these discrepancies are also discussed. Then, students dive into the different components that make up the human body: muscles, bones and joints, the digestive and circulatory systems, the nervous and endocrine systems, the urinary system, the respiratory system, and finally the immune system. Students learn about the different types of muscles in the human body and the effects of microgravity on muscles. Also, they learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. In the lessons on the digestive, circulatory, nervous and endocrine systems, students learn how these vital system work and the challenges faced by astronauts whose systems are impacted by spaceflight. And lastly, advances in engineering technology are discussed through the lessons on the urinary, respiratory and immune systems while students learn how these systems work with all the other body components to help keep the human body healthy.

Author:
Integrated Teaching and Learning Program,
Forced to Fracture
Rating
0.0 stars

Students learn how forces affect the human skeletal system through fractures and why certain bones are more likely to break than others depending on their design and use in the body. They learn how engineers and doctors collaborate to design effective treatments with consideration for the location, fracture severity and patient age, as well as the use of biocompatible materials. Learning the lesson content prepares students for the associated activity in which they test small animal bones to failure and then design treatment repair plans.

Author:
Andrea Lee, Megan Ketchum
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Lending a Hand: Teaching Forces through Assistive Device Design
Rating
0.0 stars

Students learn about how biomedical engineers create assistive devices for persons with fine motor skill disabilities. They learn about types of forces, balanced and unbalanced forces, and the relationship between form and function, as well as the structure of the hand. They do this by designing, building and testing their own hand "gripper" prototypes that are able to grasp and lift a 200 ml cup of sand.

Author:
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program,
Kelly Cox, Kristen Billiar, Terri Camesano, Jeanne Hubelbank
Let the Blood Flow
Rating
0.0 stars

Students work as biomedical engineers to find liquid solutions that can clear away polyvinyl acetate polymer "blood clots" in model arteries (made of clear, flexible tubing). Teams create samples of the "blood clot" polymer with different concentrations to discover the concentration of the model clot and then test a variety of liquids to determine which most effectively breaks down the model blood clot. Students learn the importance of the testing phase in the engineering design process, because they are only given one chance to present the team's solution and apply it to the model blood clot.

Author:
Science and Engineering of the Environment of Los Angeles (SEE-LA) GK-12 Program,
Azim Laiwalla, Ann McCabe, Carleigh Samson
Living with Your Liver
Rating
0.0 stars

Students learn the function of the liver and how biomedical engineers can use liver regeneration to help people. Students test the effects of toxic chemicals on a beef liver by adding hydrogen peroxide to various liver and salt solutions. They observe, record and graph their results.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Megan Schroeder
Denise W. Carlson
Muscles, Oh My!
Rating
0.0 stars

Students are introduced to the field of biomechanics and how the muscular system produces human movement. They learn the importance of the muscular system in our daily lives, why it is important to be able to repair muscular system injuries and how engineering can help.

Author:
Malinda Schaefer Zarske
Jake Lewis
Integrated Teaching and Learning Program,
Denise W. Carlson
Jonathan MacNeil