Fundamentals of human performance, physiology, and life support impacting engineering design and …
Fundamentals of human performance, physiology, and life support impacting engineering design and aerospace systems. Topics include: effects of gravity on the muscle, skeletal, cardiovascular, and neurovestibular systems; human/pilot modeling and human/machine design; flight experiment design; and life support engineering for extravehicular activity (EVA). Case studies of current research are presented. Assignments include a design project, quantitative homework sets, and quizzes emphasizing engineering and systems aspects.
Students are presented with an engineering challenge that asks them to develop …
Students are presented with an engineering challenge that asks them to develop a material and model that can be used to test the properties of aortic valves without using real specimens. Developing material that is similar to human heart valves makes testing easier for biomedical engineers because they can test new devices or ideas on the model valve instead of real heart valves, which can be difficult to obtain for research. To meet the challenge, students are presented with a variety of background information, are asked to research the topic to learn more specific information pertaining to the challenge, and design and build a (prototype) product. After students test their products and make modifications as needed, they convey background and product information in the form of portfolios and presentations to the potential buyer.
This course will provide the student with an overview of the body …
This course will provide the student with an overview of the body from a systemic perspective. Each unit will focus on one system, or network of organs that work together to perform a particular function. At the end of this course, the student will review the ways in which the systems overlap, as well as discuss current body imaging techniques and learn how to correctly interpret the images in order to put our newly-gained anatomical knowledge to practical use. Upon successful completion of this course, the student will be able to: identify gross and microscopic anatomy and explain interactions of the major organ systems in the human body; perform and analyze experiments in human anatomy (virtual); use language necessary to appropriately describe human anatomy; explain and identify how structure and function complement each other; describe how anatomy relates to medical situations in healthy and diseased states. (Biology 302)
Physiology is the study of the processes of the body. This course …
Physiology is the study of the processes of the body. This course is about the unconscious mechanics of living; the student will look at each organ system in detail and then discuss the ways in which the systems interact in order to maintain the body at an optimal state. Metabolism and homeostasis--or the maintenance of the body at a set, optimal level--will be the primary themes. Upon successful completion of this course, the student will be able to: describe the relationship between structure and function at the cellular level and relate dysfunctional states of health to problems at the cellular level when appropriate; given relevant physiological information, explain the physiological mechanisms involved; describe the concepts of homeostasis and feedback control in relationship to each organ system; use a vocabulary of physiological terms and demonstrate an ability to communicate efficiently in a medical environment; describe techniques currently in use that measure the function of organ systems. (Biology 304)
Fundamentals of human performance, physiology, and life support impacting engineering design and …
Fundamentals of human performance, physiology, and life support impacting engineering design and aerospace systems. Topics include: effects of gravity on the muscle, skeletal, cardiovascular, and neurovestibular systems; human/pilot modeling and human/machine design; flight experiment design; and life support engineering for extravehicular activity (EVA). Case studies of current research are presented. Assignments include a design project, quantitative homework sets, and quizzes emphasizing engineering and systems aspects.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.