Updating search results...

Search Resources

4 Results

View
Selected filters:
  • laboratory-techniques
Biochemistry Laboratory, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" The course, which spans two thirds of a semester, provides students with a research-inspired laboratory experience that introduces standard biochemical techniques in the context of investigating a current and exciting research topic, acquired resistance to the cancer drug Gleevec. Techniques include protein expression, purification, and gel analysis, PCR, site-directed mutagenesis, kinase activity assays, and protein structure viewing. This class is part of the new laboratory curriculum in the MIT Department of Chemistry. Undergraduate Research-Inspired Experimental Chemistry Alternatives (URIECA) introduces students to cutting edge research topics in a modular format. Acknowledgments Development of this course was funded through an HHMI Professors grant to Professor Catherine L. Drennan."

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Textbook
Author:
Taylor, Elizabeth Vogel
Date Added:
01/01/2009
Blood: The Stuff of Life
Rating
0.0 stars

The purpose of this lesson is to teach students about blood and its components while instilling an appreciation of its importance for survival. The lesson takes a step-by-step approach to determining the recipe for blood while introducing students to important laboratory techniques like centrifugation and microscopy, as well as some diseases of cell types found in blood. It also highlights the importance of donating blood by explaining basic physiological concepts and the blood donation procedure.

Author:
Melis Anahtar
Chronic Infection and Inflammation: What are the Consequences on Your Health?, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course we will explore the new emerging field of pathogen-induced chronic diseases. Work in this field has redefined the causes of some major disorders, such as ulcers. By reading the primary research literature we will learn about the molecular mechanisms through which pathogens cause disease. The diseases that we cover will be introduced with a short patient case study. We will discuss the bacterium Helicobacter pylori and gastric disease, HPV and cervical cancer, hepatitis C virus and liver disease, Epstein-Barr virus and lymphoma, Cytomegalovirus and atherosclerosis, as well as diabetes and multiple sclerosis. We will study technical advances in the fight against microbes and explore future directions for new treatment strategies of chronic infections and inflammation. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Textbook
Author:
Frickel, Eva
Gredmark, Sara
Date Added:
01/01/2007
Digital Lab Techniques Manual, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The "Digital Lab Techniques Manual" is a series of videos designed to help you prepare for your chemistry laboratory class. Each video provides a detailed demonstration of a common laboratory technique, as well as helpful tips and information. These videos are meant to supplement, and not replace, your lab manual and assigned reading. In fact, you will most benefit from watching the videos if you have already read the appropriate background information. To be a great experimentalist, you must understand both theory and technique! If you have questions about what you see, make sure to ask your TA or your instructor. WARNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT shall have no responsibility, liability, or risk for the content or implementation of any of the material presented.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Textbook
Author:
Berkowski, Kimberly
Huang, Eileen
Siddiqui, Aayesha
Tabacco, Sarah
Date Added:
01/01/2007