This activity is a classroom hands-on , active learning lesson where students observe and describe a familiar item, to help them observe and describe the physical characteristics of rocks.
- Author:
- Gbai Metzger
- Metzger, Gbai
This activity is a classroom hands-on , active learning lesson where students observe and describe a familiar item, to help them observe and describe the physical characteristics of rocks.
This is a classroom activity in which students develop understanding of the rock cycle using wax crayons to model the processes that form the 3 types of rock; sedimentary, igneous & metamorphic.
The theme for Earth Systems Science is systems. The "Benchmarks" in the Earth Systems Science Core emphasize "systems" as an organizing concept to understand life on Earth, geological change, and the interaction of atmosphere, hydrosphere, and biosphere. Earth Systems Science provides students with an understanding of how the parts of a system interact. The concept of matter cycling and energy flowing is used to help understand how systems on planet Earth are interrelated. Throughout this course students experience science as a way of knowing based on making observations, gathering data, designing experiments, making inferences, drawing conclusions, and communicating results. Students see that the science concepts apply to their lives and their society. This course will provide students with science skills to make informed and responsible decisions. Students will learn how to explain cosmic and global phenomena in terms of interactions of energy, matter, and life. These explorations range from the realization that all elements heavier than helium were made in stars to an understanding of how rain influences a desert ecosystem.
Students investigate how mountains are formed. Concepts include the composition and structure of the Earth's tectonic plates and tectonic plate boundaries, with an emphasis on plate convergence as it relates to mountain formation. Students learn that geotechnical engineers design technologies to measure movement of tectonic plates and mountain formation, as well as design to alter the mountain environment to create safe and dependable roadways and tunnels.
This activity is a lab inquiry-base lesson on the rock cycle. Students will look at the parts of the rock cycle by examining three rocks. Based on their observations and data they collect they should be able to develop a hypothesis and an experiment to test this hypothesis.
This activity is a quantative writing activity where students will use writing and illustrations to show their knowledge of the basic rock cycle.
This activity is a field investagation where students will discover answers to their questions about the rock cycle.
Students learn the components of the rock cycle and how rocks can change over time under the influence of weathering, erosion, pressure and heat. They learn about geotechnical engineering and the role these engineers play in the development of an area of land, the design and placement of new structures, and detection of natural disasters.
Have you ever wondered how scientists analyze the environment? This unit introduces you to the techniques used by science students at residential schools. You will learn how to determine where rocks have come from and how they were made. You will also examine the processes involved in determining the ecology of a particular area.
Through five lessons, students are introduced to all facets of the rock cycle. Topics include rock and mineral types, material stresses and weathering, geologic time and fossil formation, the Earth's crust and tectonic plates, and soil formation and composition. Lessons are presented in the context of the related impact on humans in the form of roadway and tunnel design and construction, natural disasters, environmental site assessment for building structures, and measurement instrumentation and tools. Hands-on activities include experiencing tensional, compressional and shear material stress by using only hand force to break bars of soap; preparing Jeopardy-type trivia questions/answers for a class game that reinforces students' understanding of rocks and the rock cycle; creating "fossils" using melted chocolate; working within design constraints to design and build a model tunnel through a clay mountain; and soil sampling by creating tools, obtaining soil cores, documenting a soil profile log, and analyzing the findings to make engineering predictions.
This activity is a hands-on simulation of the rock cycle.
This activity is a skit, commercial or song/rap about the rock cycle
Students reinforce their understanding of rocks, the rock cycle, and geotechnical engineering by playing a trivia game. They work in groups to prepare Jeopardy-type trivia questions (answers) and compete against each other to demonstrate their knowledge of rocks and engineering.
Rocks cover the earth's surface, including what is below or near human-made structures. With rocks everywhere, breaking rocks can be hazardous and potentially disastrous to people. Students are introduced to three types of material stress related to rocks: compressional, torsional and shear. They learn about rock types (sedimentary, igneous and metamorphic), and about the occurrence of stresses and weathering in nature, including physical, chemical and biological weathering.
Students learn about one method used in environmental site assessments. They practice soil sampling by creating soil cores, studying soil profiles and characterizing soil profiles in borehole logs. They use their analysis to make predictions about what is going on in the soil and what it might mean to an engineer developing the area.
Students learn the basics about soil, including its formation, characteristics and importance. They are also introduced to soil profiles and how engineers conduct site investigations to learn about soil quality for development, contamination transport, and assessing the general environmental health of an area.
This lesson will extend the learning on rocks with the Foss kit, Pebbles, Sand, and Silt to include soil. Students will perform the soil sifting activity like the one designed for rocks in the Foss it. Through their work, students will complete a Venn diagram of soil and rocks as a class.
Students apply their knowledge about mountains and rocks to transportation engineering, with the task of developing a model mountain tunnel that simulates the principles behind real-life engineering design. Student teams design and create model tunnels through a clay mountain, working within design constraints and testing for success; the tunnels must meet specific design requirements and withstand a certain load.