Unified theory of information with applications to computing, communications, thermodynamics, and other …
Unified theory of information with applications to computing, communications, thermodynamics, and other sciences. Digital signals and streams, codes, compression, noise, and probability. Reversible and irreversible operations. Information in biological systems. Channel capacity. Maximum-entropy formalism. Thermodynamic equilibrium, temperature. The Second Law of Thermodynamics. Quantum computation.
Introduction to probability, statistical mechanics, and thermodynamics. Random variables, joint and conditional …
Introduction to probability, statistical mechanics, and thermodynamics. Random variables, joint and conditional probability densities, and functions of a random variable. Concepts of macroscopic variables and thermodynamic equilibrium, fundamental assumption of statistical mechanics, microcanonical and canonical ensembles. First, second, and third laws of thermodynamics. Numerous examples illustrating a wide variety of physical phenomena such as magnetism, polyatomic gases, thermal radiation, electrons in solids, and noise in electronic devices. Concurrent enrollment in Quantum Physics I is recommended.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.