Updating search results...

Search Resources

1612 Results

View
Selected filters:
  • Engineering
Blow-and-Go Parachute
Rating
0.0 stars

Students make a skydiver and parachute contraption to demonstrate how drag caused by air resistance slows the descent of skydivers as they travel back to Earth. Gravity pulls the skydiver toward the Earth, while the air trapped by the parachute provides an upward resisting force (drag) on the skydiver.

Author:
Ben Heavner
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Sabre Duren
Denise Carlson
Body Circulation
Rating
0.0 stars

Students are introduced to the circulatory system, the heart, and blood flow in the human body. Through guided pre-reading, during-reading and post-reading activities, students learn about the circulatory system's parts, functions and disorders, as well as engineering medical solutions. By cultivating literacy practices as presented in this lesson, students can improve their scientific and technological literacy.

Author:
Todd Curtis
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise W. Carlson
TeachEngineering.org
Jay Shah
Body Full of Crystals
Rating
0.0 stars

Students learn about various crystals, such as kidney stones, within the human body. They also learn about how crystals grow and ways to inhibit their growth. They also learn how researchers such as chemical engineers design drugs with the intent to inhibit crystal growth for medical treatment purposes and the factors they face when attempting to implement their designs. A day before presenting this lesson to students, conduct the associated activity, Rock Candy Your Body.

Author:
Andrea Lee, Megan Ketchum
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs, University of Houston,
Bombs Away!
Rating
0.0 stars

Students design and build devices to protect and accurately deliver dropped eggs. The devices and their contents represent care packages that must be safely delivered to people in a disaster area with no road access. Similar to engineering design teams, students design their devices using a number of requirements and constraints such as limited supplies and time. The activity emphasizes the change from potential energy to kinetic energy of the devices and their contents and the energy transfer that occurs on impact. Students enjoy this competitive challenge as they attain a deeper understanding of mechanical energy concepts.

Author:
Engineering K-PhD Program,
Dan Choi, MUSIC Program
Randall Evans, MUSIC Program
Bone Crusher
Rating
0.0 stars

Students use a tension-compression machine (or an alternative bone-breaking setup) to see how different bones fracture differently and with different amounts of force, depending on their body locations. Teams determine bone mass and volume, calculate bone density, and predict fracture force. Then they each test a small animal bone (chicken, turkey, cat) to failure, examining the break to analyze the fracture type. Groups conduct research about biomedical challenges, materials and repair methods, and design repair treatment plans specific to their bones and fracture types, presenting their design recommendations to the class.

Author:
Andrea Lee, Megan Ketchum
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Bone Density Challenge Introduction
Rating
0.0 stars

Students are introduced to the challenge question, which revolves around proving that a cabinet x-ray system can produce bone mineral density images. Students work independently to generate ideas from the questions provided, then share with partners and then with the class as part of the Multiple Perspectives phase of this unit. Then, as part of the associated activity, students explore multiple websites to gather information about bone mineral density and answer worksheet questions, followed by a quiz on the material covered in the articles.

Author:
VU Bioenegineering RET Program ,
TeachEngineering.org
Kristyn Shaffer
Megan Johnston
Bone Density Math and Logarithm Introduction
Rating
0.0 stars

In their reading from activity 1 of this unit, students should have discovered the term "logarithm." It is at this point that they begin their study of logarithms. Specifically, students examine the definition, history and relationship to exponents; they rewrite exponents as logarithms and vice versa, evaluating expressions, solving for a missing piece. Students then study the properties of logarithms (multiplication/addition, division/subtraction, exponents). They complete a set of practice problems to apply the skills they have learned (rewriting logarithms and exponents, evaluating expressions, solving/examining equations for a missing variable.) Then they complete a short quiz covering what they have studied thus far concerning logarithms (problems similar to the practice problems). They consider how what they have learned moves them closer to answering the unit's challenge question.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Kristyn Shaffer
Megan Johnston
Bone Fractures and Engineering
Rating
0.0 stars

Students learn about the role engineers and engineering play in repairing severe bone fractures. They acquire knowledge about the design and development of implant rods, pins, plates, screws and bone grafts. They learn about materials science, biocompatibility and minimally-invasive surgery.

Author:
Integrated Teaching and Learning Program, College of Engineering,
Todd Curtis, Malinda Schaefer Zarske, Janet Yowell, Denise W. Carlson
Bone Mineral Density Math and Beer's Law
Rating
0.0 stars

Students revisit the mathematics required to find bone mineral density, to which they were introduced in lesson 2 of this unit. They learn the equation to find intensity, Beer's law, and how to use it. Then they complete a sheet of practice problems that use the equation.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Kristyn Shaffer
Megan Johnston
Bone Mineral Density and Logarithms
Rating
0.0 stars

Students examine an image produced by a cabinet x-ray system to determine if it is a quality bone mineral density image. They write in their journals about what they need to know to be able to make this judgment. Students learn about what bone mineral density is, how a BMD image can be obtained, and how it is related to the x-ray field. Students examine the process used to obtain a BMD image and how this process is related to mathematics, primarily through logarithmic functions. They study the relationship between logarithms and exponents, the properties of logarithms, common and natural logarithms, solving exponential equations and Beer's law.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Kristyn Shaffer
Megan Johnston
Bones! Bones! Bones!
Rating
0.0 stars

After learning, comparing and contrasting the steps of the engineering design process (EDP) and scientific method, students review the human skeletal system, including the major bones, bone types, bone functions and bone tissues, as well as other details about bone composition. Students then pair-read an article about bones and bone growth and compile their notes to summarize the article. Finally, students complete a homework assignment to review the major bones in the human body, preparing them for the associated activities in which they create and test prototype replacement bones with appropriate densities. Two PowerPoint(TM) presentations, pre-/post-test, handout and worksheet are provided.

Author:
Michelle Gallagher, Terri Camesano, Jeanne Hubelbank, Kristen Billiar, Dua Chaker, Carleigh Samson
Inquiry-Based Bioengineering Research and Design Experiences for Middle-School Teachers RET Program, Department of Biomedical Engineering, Worcester Polytechnic Institute,
Boom Construction
Rating
0.0 stars

Student teams design their own booms (bridges) and engage in a friendly competition with other teams to test their designs. Each team strives to design a boom that is light, can hold a certain amount of weight, and is affordable to build. Teams are also assessed on how close their design estimations are to the final weight and cost of their boom "construction." This activity teaches students how to simplify the math behind the risk and estimation process that takes place at every engineering firm prior to the bidding phase when an engineering firm calculates how much money it will take to build the project and then "bids" against other competitors.

Author:
AMPS GK-12 Program,
Stanislav Roslyakov
Janet Yowell
Both Fields at Once?!
Rating
0.0 stars

This lesson discusses the result of a charge being subject to both electric and magnetic fields at the same time. It covers the Hall effect, velocity selector, and the charge to mass ratio. Given several sample problems, students learn to calculate the Hall Voltage dependent upon the width of the plate, the drift velocity, and the strength of the magnetic field. Then students learn to calculate the velocity selector, represented by the ratio of the magnitude of the fields assuming the strength of each field is known. Finally, students proceed through a series of calculations to arrive at the charge to mass ratio. A homework set is included as an evaluation of student progress.

Author:
VU Bioengineering RET Program, School of Engineering,
Eric Appelt
Bouncing Balls
Rating
0.0 stars

Students examine how different balls react when colliding with different surfaces, giving plenty of opportunity for them to see the difference between elastic and inelastic collisions, learn how to calculate momentum, and understand the principle of conservation of momentum.

Author:
Bailey Jones
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise Carlson
Matt Lundberg
Chris Yakacki
Bouncing Balls (for High School)
Rating
0.0 stars

In this activity, students examine how different balls react when colliding with different surfaces. Also, they will have plenty of opportunity to learn how to calculate momentum and understand the principle of conservation of momentum.

Author:
Janet Yowell
Bailey Jones
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Ben Sprague
Denise Carlson
Matt Lundberg
Chris Yakacki
Boxed In and Wrapped Up
Read the Fine Print
Rating
0.0 stars

Students find the volume and surface area of a rectangular box (e.g., a cereal box), and then figure out how to convert that box into a new, cubical box having the same volume as the original. As they construct the new, cube-shaped box from the original box material, students discover that the cubical box has less surface area than the original, and thus, a cube is a more efficient way to package things. Students then consider why consumer goods generally aren't packaged in cube-shaped boxes, even though they would require less material to produce and ultimately, less waste to discard. To display their findings, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. The activities involved provide valuable experience in problem solving with spatial-visual relationships.

Subject:
Applied Science
Engineering
Geometry
Mathematics
Material Type:
Activity/Lab
Lesson Plan
Author:
Engineering K-PhD Program,
Mary R. Hebrank (project writer and consultant)
Date Added:
09/18/2014
The Boxes Go Mobile
Rating
0.0 stars

To display the results from the previous activity, each student designs and constructs a mobile that contains a duplicate of his or her original box, the new cube-shaped box of the same volume, the scraps that are left over from the original box, and pertinent calculations of the volumes and surface areas involved. They problem solve and apply their understanding of see-saws and lever systems to create balanced mobiles.

Author:
Engineering K-PhD Program,
Mary R. Hebrank (project writer and consultant)
Brain is a Computer
Rating
0.0 stars

Students learn about the similarities between the human brain and its engineering counterpart, the computer. Since students work with computers routinely, this comparison strengthens their understanding of both how the brain works and how it parallels that of a computer. Students are also introduced to the "stimulus-sensor-coordinator-effector-response" framework for understanding human and robot actions.

Author:
GK-12 Program, Computational Neurobiology Center,
Sachin Nair, Charlie Franklin, Satish Nair
Breaking Beams
Rating
0.0 stars

Students learn about stress and strain by designing and building beams using polymer clay. They compete to find the best beam strength to beam weight ratio, and learn about the trade-offs engineers make when designing a structure.

Author:
Ben Heavner
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Denise Carlson
Chris Yakacki
Breaking the Mold
Rating
0.0 stars

In this math activity, students conduct a strength test using modeling clay, creating their own stress vs. strain graphs, which they compare to typical steel and concrete graphs. They learn the difference between brittle and ductile materials and how understanding the strength of materials, especially steel and concrete, is important for engineers who design bridges and structures.

Author:
Malinda Schaefer Zarske
Natalie Mach
Denise W. Carlson
Chris Valenti
Denali Lander
Jonathan S. Goode
Joe Friedrichsen