Updating search results...

Search Resources

252 Results

View
Selected filters:
Searching for Bigfoot and Others Like Him
Rating
0.0 stars

Cryptids, creatures of questionable existence, are used as a source of data to guide students into the creation of their own GIS data layer in Google Earth. The activity serves the purpose of a tutorial to teach students how to make data layers with a simple subject. Then they use that skill on other topics such as plastics in their neighborhood.

Author:
TeachEngineering.org
Nathan Howell
Andrey Koptelov
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Separating Mixtures
Rating
0.0 stars

Students learn how to classify materials as mixtures, elements or compounds and identify the properties of each type. The concept of separation of mixtures is also introduced since nearly every element or compound is found naturally in an impure state such as a mixture of two or more substances, and it is common that chemical engineers use separation techniques to separate mixtures into their individual components. For example, the separation of crude oil into purified hydrocarbons such as natural gas, gasoline, diesel, jet fuel and/or lubricants.

Author:
TeachEngineering.org
Parnia Mohammadi
Roberto Dimaliwat
National Science Foundation GK-12 and Research Experience for Teachers (RET) Programs,
Simple Coulter Counter
Rating
0.0 stars

Students build and use a very basic Coulter electric sensing zone particle counter to count an unknown number of particles in a sample of "paint" to determine if enough particles per ml of "paint" exist to meet a quality standard. In a lab experiment, student teams each build an apparatus and circuit, set up data acquisition equipment, make a salt-soap solution, test liquid flow in the apparatus, take data, and make graphs to count particles.

Author:
TeachEngineering.org
NSF CAREER Award and RET Program,
Jean Stave, Durham Public Schools, NC
Chuan-Hua Chen, Mechanical Engineering and Material Science
Simple Machines and Modern Day Engineering Analogies
Rating
0.0 stars

Students apply the mechanical advantages and problem-solving capabilities of six types of simple machines (wedge, wheel and axle, lever, inclined plane, screw, pulley) as they discuss modern structures in the spirit of the engineers and builders of the great pyramids. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.

Author:
Malinda Schaefer Zarske
Integrated Teaching and Learning Program,
Brett S. Ellison
Lawrence E. Carlson
Jacquelyn Sullivan
TeachEngineering.org
Denise Carlson
Denise Carlson, with design input from the students in the spring 2005 K-12 Engineering Outreach Corps course.
Skeletal System
Rating
0.0 stars

Through this unit, written for an honors anatomy and physiology class, students become familiar with the human skeletal system and answer the Challenge Question: When you get home from school, your mother grabs you, and you race to the hospital. Your grandmother fell and was rushed to the emergency room. The doctor tells your family your grandmother has a fractured hip, and she is referring her to an orthopedic specialist. The orthopedic doctor decides to perform a DEXA scan. The result show her BMD is -3.3. What would be a probable diagnosis to her condition? What are some possible causes of her condition? Should her daughter and granddaughter be worried about this condition, and if so, what are measures they could take to prevent this from happening to them?

Author:
VU Bioengineering RET Program,
TeachEngineering.org
Morgan R. Evans
Skeletal System Overview
Rating
0.0 stars

Students will learn about bone structure, bone development and growth, and bone functions. Later, students will apply this understanding to answer the Challenge Question presented in the "Fix the Hip" lesson and use the acquired learning to construct an informative brochure about osteoporosis and biomedical engineering contributions to this field.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Morgan Evans (Primary Author)
Smart Move!
Rating
0.0 stars

Students become familiar with the concept of a communication system, its various parts and functions. To do this, they encode, decode, transmit, receive and store messages for a hypothetical rescue mission, using a code sheet and flashlight for this process.They also maintain storage sheets from which they can retrieve information as it is required.

Author:
TeachEngineering.org
Ozan Baskan
K-12 Outreach Office,
Solenoids
Rating
0.0 stars

This lesson discusses solenoids. Students learn how to calculate the magnetic field along the axis of a solenoid and complete an activity exploring the magnetic field of a metal slinky. Solenoids form the basis for the magnet of an MRI. Exploring the properties of this solenoid helps students understand the MRI machine.

Author:
TeachEngineering.org
VU Bioengineering RET Program, School of Engineering,
Eric Appelt
Eric Appelt (Primary Author)
Solving with Seesaws
Rating
0.0 stars

Students use a simple seesaw to visualize solving a two- or three-step mathematics equation, while solving a basic structural engineering weight balance problem in the process. They solve two-step equations on a worksheet and attempt to solve the challenge of "balancing a beam" through hands-on problems. The use of sensor equipment for correct position monitoring aids students in balancing the structure, as well as balancing the equation as they solve it on paper.

Author:
AMPS GK-12 Program,
TeachEngineering.org
Ronald Poveda
Sound
Rating
0.0 stars

Students learn the connections between the science of sound waves and engineering design for sound environments. Through three lessons, students come to better understand sound waves, including how they change with distance, travel through different mediums, and are enhanced or mitigated in designed sound environments. They are introduced to audio engineers who use their expert scientific knowledge to manipulate sound for music and film production. They see how the invention of the telephone pioneered communications engineering, leading to today's long-range communication industry and its worldwide impact. Students analyze materials for sound properties suitable for acoustic design, learning about the varied environments created by acoustical engineers. Hands-on activities include modeling the placement of microphones to create a specific musical image, modeling and analyzing a string telephone, and applyling what they've learned about sound waves and materials to model a controlled sound room.

Author:
TeachEngineering.org
Integrated Teaching and Learning Program,
See individual lessons and activities.
Sound Extenders
Read the Fine Print
Rating
0.0 stars

In this lesson, students are introduced to communications engineers as people who enable long-range communication. In the lesson demonstration, students discuss the tendency of sound to diminish with distance and model this phenomenon using a slinky. Finally, Alexander Graham Bell is introduced as the inventor of the telephone and a pioneer in communications engineering.

Subject:
Applied Science
Education
Engineering
Physical Science
Physics
Material Type:
Activity/Lab
Lesson Plan
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Michael Bendewald
TeachEngineering.org
Date Added:
09/18/2014
Space
Rating
0.0 stars

This unit begins by introducing students to the historical motivation for space exploration. They learn about the International Space Station, including current and futuristic ideas that engineers are designing to propel space research. Then they learn about the physical properties of the Moon, and think about what types of products engineers would need to design in order for humans to live on the Moon. Lastly, students learn some descriptive facts about asteroids, such as their sizes and how that relates to the potential danger of an asteroid colliding with the Earth.

Author:
TeachEngineering.org
Integrated Teaching and Learning Program,
Space Travel
Rating
0.0 stars

In this lesson, students are introduced to the historical motivation for space exploration. They learn about the International Space Station as an example of recent space travel innovation and are introduced to new and futuristic ideas that space engineers are currently working on to propel space research far into the future!

Author:
Janet Yowell
Jane Evenson
Integrated Teaching and Learning Program,
Geoffrey Hill
Jessica Butterfield
Jessica Todd
TeachEngineering.org
Brian Kay
Sam Semakula
Karen King
Splish, Splash, I was Takin' a Bath!
Read the Fine Print
Rating
0.0 stars

In this lesson, students will explore the causes of water pollution and its effects on the environment through the use of models and scientific investigation. In the accompanying activities, they will investigate filtration and aeration processes as they are used for removing pollutants from water. Lastly, they will learn about the role of engineers in water treatment systems.

Subject:
Applied Science
Engineering
Geoscience
Life Science
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Amy Kolenbrander
Integrated Teaching and Learning Program,
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
TeachEngineering.org
Date Added:
09/18/2014
Spring Away!
Rating
0.0 stars

This lab demonstrates Hooke's Law with the use of springs and masses. Students attempt to determine the proportionality constant, or k-value, for a spring. They do this by calculating the change in length of the spring as different masses are added to it. The concept of a spring's elastic limit is also introduced, and the students test to makes sure the spring's elastic limit has not been reached during their lab tests. After compiling their data, they attempt to find an average value of the spring's k-value by measuring the slopes between each of their data points. Then they apply what they've learned about springs to how engineers might use that knowledge in the design of a toy that enables kids to jump 2-3 feet in the air.

Author:
TeachEngineering.org
Aubrey Mckelvey
VU Bioengineering RET Program, School of Engineering,
Start Networking!
Rating
0.0 stars

To get a better understanding of complex networks, students create their own, real social network example by interacting with their peers in the classroom and documenting the interactions. They represent the interaction data as a graph, calculate two mathematical quantities associated with the graph—the degree of each node and the degree distribution of the graph—and analyze how these quantities can be used to infer properties of the social network at hand.

Author:
TeachEngineering.org
Complex Systems Science Laboratory,
Debbie Jenkinson and Susan Frennesson, The Pine School, Stuart, FL
Garrett Jenkinson and John Goutsias, The Johns Hopkins University, Baltimore, MD
States of Matter
Rating
0.0 stars

Students act as chemical engineers and use LEGO® MINDSTORMS® NXT robotics to record temperatures and learn about the three states of matter. Properties of matter can be measured in various ways, including volume, mass, density and temperature. Students measure the temperature of water in its solid state (ice) as it is melted and then evaporated.

Author:
AMPS GK-12 Program,
TeachEngineering.org
Akim Faisal
Storing Android Accelerometer Data: App Design
Rating
0.0 stars

Students work through an online tutorial on MIT's App Inventor to learn how to create Android applications. Using those skills, they create their own applications and use them to collect data from an Android device accelerometer and store that data to databases. NOTE: Teachers and students must have a working knowledge of basic programming and App Inventor to complete this lesson. This lesson is not an introduction to MIT's App Inventor and is not recommended for use without prior knowledge of App Inventor to produce an end product. This lesson is an application for App Inventor that allows for the storage of persistent data (data that remains in memory even if an app is closed). This required prior knowledge can come from other experiences with the App Inventor. Also, many additional resources are available, such as tutorials from MIT. This lesson could also be used as an enrichment project for students who are self-motivated to learn the App Inventor software.

Author:
TeachEngineering.org
Scott Burns, Brian Sandall
IMPART RET Program, College of Information Science & Technology,
Straining out the Dirt
Rating
0.0 stars

In this activity, students build a water filter with activated carbon, cotton and other materials to remove chocolate powder from water.

Author:
Janet Yowell
Ben Heavner
Integrated Teaching and Learning Program,
Sharon D. Pérez-Suárez
Malinda Schaefer
Matt Lundberg
TeachEngineering.org
Stress, Strain and Hooke's Law
Rating
0.0 stars

Students are introduced to Hooke's law as well as stress-strain relationships. First they learn the governing equations, then they work through several example problems, first individually, then as a class. Through the lesson's two-part associated activity, students 1) explore Hooke's law by experimentally determining an unknown spring constant, and then 2) apply what they've learned to create a strain graph depicting a tumor using Microsoft Excel®. After the activities, the lesson concludes with a stress-strain quiz to assess each student's comprehension of the concepts.

Author:
Luke Diamond
TeachEngineering.org
Meghan Murphy
VU Bioengineering RET Program, School of Engineering,