Updating search results...

Search Resources

683 Results

View
Selected filters:
  • Textbook
Mechanical Behavior of Plastics, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is aimed at presenting the concepts underlying the response of polymeric materials to applied loads. These will include both the molecular mechanisms involved and the mathematical description of the relevant continuum mechanics. It is dominantly an "engineering" subject, but with an atomistic flavor. It covers the influence of processing and structure on mechanical properties of synthetic and natural polymers: Hookean and entropic elastic deformation, linear viscoelasticity, composite materials and laminates, yield and fracture.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Roylance, David
Date Added:
01/01/2007
Mechanical Properties of Materials, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Phenomenology of mechanical behavior of materials at the macroscopic level. Relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics include: elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples drawn from a variety of classes of materials including: metals, ceramics, polymers, thin films, composites, and cellular materials.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Gibson, Lorna J.
Date Added:
01/01/2003
Mechanical Properties of Materials, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Phenomenology of mechanical behavior of materials at the macroscopic level. Relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics include: elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples drawn from a variety of classes of materials including: metals, ceramics, polymers, thin films, composites, and cellular materials.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Gibson, Lorna J.
Date Added:
01/01/2004
Mechanical Properties of Rocks, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A survey of the mechanical behavior of rocks in natural geologic situations. Topics: brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. Results of field petrologic and structural studies compared to data from experimental structural geology.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Evans, J
Date Added:
01/01/2005
Mechanics and Materials I, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to statics and the mechanics of deformable solids. Emphasis on the three basic principles of equilibrium, geometric compatibility, and material behavior. Stress and its relation to force and moment; strain and its relation to displacement; linear elasticity with thermal expansion. Failure modes. Application to simple engineering structures such as rods, shafts, beams, and trusses. Application to design. Introduction to material selection. This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Socrate, Simona
Date Added:
01/01/2006
Mechanics and Materials II, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces mechanical behavior of engineering materials, and the use of materials in mechanical design. Emphasizes the fundamentals of mechanical behavior of materials, as well as design with materials. Major topics: elasticity, plasticity, limit analysis, fatigue, fracture, and composites. Materials selection. Laboratory experiments involving projects related to materials in mechanical design. This course provides Mechanical Engineering students with an awareness of various responses exhibited by solid engineering materials when subjected to mechanical and thermal loadings; an introduction to the physical mechanisms associated with design-limiting behavior of engineering materials, especially stiffness, strength, toughness, and durability; an understanding of basic mechanical properties of engineering materials, testing procedures used to quantify these properties, and ways in which these properties characterize material response; quantitative skills to deal with materials-limiting problems in engineering design; and a basis for materials selection in mechanical design.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Anand, Lallit
Date Added:
01/01/2004
Mechanisms of Drug Actions, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course addresses the scientific basis for the development of new drugs. The first half of the semester begins with an overview of the drug discovery process, followed by fundamental principles of pharmacokinetics, pharmacodynamics, metabolism, and the mechanisms by which drugs cause therapeutic and toxic responses. The second half of the semester applies those principles to case studies and literature discussions of current problems with specific drugs, drug classes, and therapeutic targets.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Full Course
Textbook
Author:
Mark Murcko
Steven Tannenbaum
Date Added:
01/01/2013
Mechatronics, Fall 2014
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is an introduction to designing mechatronic systems, which require integration of the mechanical and electrical engineering disciplines within a unified framework. There are significant laboratory-based design experiences. Topics covered in the course include: Low-level interfacing of software with hardware; use of high-level graphical programming tools to implement real-time computation tasks; digital logic; analog interfacing and power amplifiers; measurement and sensing; electromagnetic and optical transducers; control of mechatronic systems.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Trumper, David L.
Date Added:
01/01/2014
Media Technology and City Design and Development, Fall 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Explores the potential of information technology and the internet to transform public education, city design, and community development in inner-city neighborhoods. Associated with the West Philadelphia Landscape Project, an ongoing action-research program integrating research, teaching, and community service since 1987. This workshop explores the potential of media technology and the Internet to enhance communication and transform city design and community development in inner-city neighborhoods. The class introduces a variety of methods for describing or representing a place and its residents, for simulating actions and changes, for presenting visions of the future, and for engaging multiple actors in the process of envisioning change and guiding action. Students will engage one neighborhood, meet real people working on real projects, put theory into practice, and reflect on insights gained in the process. This year the course will examine what it means to be an urban designer/planner and how to create a digital teaching tool (using digital storytelling) that supports others in learning about the relationship between design and planning professionals, on the one hand, and members of the communities they serve, on the other. What is the nature of the knowledge that resides in a community and how can designers and planners learn about, tap, and use that knowledge? What is the relationship between community organizing and urban design and planning? What are the relationships between you as a professional, the place(s) in which you work, and the values and care you bring to that work? We will explore these themes in the context of Camfield Estates in Lower Roxbury, MA and its participation in the US Department of Housing and Urban Development's (HUD) Demonstration Disposition Project. There have been many stories written about Camfield Estates' participation in the Demonstration Disposition project, for it has been widely regarded as a model of success. There are two stories that have not yet been told, however: the story of the residents who organized the community and the story of the architects and planners who participated in the project. This course will use digital storytelling to reconstruct and connect these two stories.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Textbook
Author:
McDowell, Ceasar L.
Date Added:
01/01/2002
Medical Artificial Intelligence, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces representations, techniques, and architectures used to build applied systems and to account for intelligence from a computational point of view. Applications of rule chaining, heuristic search, constraint propagation, constrained search, inheritance, and other problem-solving paradigms. Applications of identification trees, neural nets, genetic algorithms, and other learning paradigms. Speculations on the contributions of human vision and language systems to human intelligence.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Full Course
Textbook
Author:
Szolovits, Peter
Date Added:
01/01/2005
Medical Computing, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The focus of the course is on medical science and practice in the age of automation and the genome, both present and future. It includes an analysis of the computational needs of clinical medicine, a review systems and approaches that have been used to support those needs, and an examination of new technologies.

Subject:
Applied Science
Computer Science
Health, Medicine and Nursing
Material Type:
Full Course
Textbook
Author:
Ohno-Machado, Lucila
Date Added:
01/01/2003
Medical Geology/Geochemistry: An Exposure, January (IAP) 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Laboratory or field work in earth, atmospheric, and planetary sciences. To be arranged with department faculty. Consult with department Education Office. This course introduces students to the basic concepts of Medical Geology/Geochemistry. Medical Geology/Geochemistry is the study of the interaction between abundances of elements and isotopes and the health of humans and plants.

Subject:
Atmospheric Science
Chemistry
Geology
Physical Science
Material Type:
Full Course
Textbook
Author:
Pillalamarri, Ila
Date Added:
01/01/2006
Microelectronic Devices and Circuits, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Modeling of microelectronic devices, and basic microelectronic circuit analysis and design. Physical electronics of semiconductor junction and MOS devices. Relation of electrical behavior to internal physical processes; development of circuit models; and understanding the uses and limitations of various models. Use of incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. Design project. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Textbook
Author:
Akinwande, A. I.
Fonstad, Clifton
Perrott, Michael H.
Date Added:
01/01/2003
Microelectronic Devices and Circuits, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits."

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Textbook
Author:
Fonstad Jr, Clifton
Date Added:
01/01/2009
Microelectronic Devices and Circuits, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Modeling of microelectronic devices, and basic microelectronic circuit analysis and design. Physical electronics of semiconductor junction and MOS devices. Relation of electrical behavior to internal physical processes; development of circuit models; and understanding the uses and limitations of various models. Use of incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits. Design project. 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Textbook
Author:
Del Alamo, Jesus
Date Added:
01/01/2003
Microelectronic Devices and Circuits, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" 6.012 is the header course for the department's "Devices, Circuits and Systems" concentration. The topics covered include: modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and metal-on-silicon (MOS) devices, relation of electrical behavior to internal physical processes, development of circuit models, and understanding the uses and limitations of various models. The course uses incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits, with examples chosen from digital circuits, single-ended and differential linear amplifiers, and other integrated circuits."

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Textbook
Author:
Hoyt, Judy
Kong, Jing
Sodini, Charles
del Alamo, Jes
Date Added:
01/01/2009
Microscopic Theory of Transport, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Discusses basic physical mechanisms of particle and radiation transport due to microscopic collisions. Simple explanation of transport coefficients (e.g., diffusivity, viscosity, heat conductivity, electrical conductivity) and various nuclear cross sections. Derivation of the microscopic kinetic equation describing transport; the Boltzmann equation. Derivation of practical engineering fluid models (e.g., classical thermodynamics, the Navier Stokes equations, the neutron transport equations) from the kinetic model. Subject material elucidates the common roots of these widely different models. Transport is among the most fundamental and widely studied phenomena in science and engineering. This subject will lay out the essential concepts and current understanding, with emphasis on the molecular view, that cut across all disciplinary boundaries. (Suitable for all students in research.) Broad perspectives of transport phenomena; From theory and models to computations and simulations; Micro/macro coupling; Current research insights

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Yip, Sidney
Date Added:
01/01/2003
Mobile Autonomous Systems Laboratory, January (IAP) 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

MASLab (Mobile Autonomous System Laboratory) is a robotics contest. The contest takes place during MIT's Independent Activities Period and participants earn 6 units of P/F credit and 6 Engineering Design Points. Teams of three to four students have less than a month to build and program sophisticated robots which must explore an unknown playing field and perform a series of tasks. MASLab provides a significantly more difficult robotics problem than many other university-level robotics contests. Although students know the general size, shape, and color of the floors and walls, the students do not know the exact layout of the playing field. In addition, MASLab robots are completely autonomous, or in other words, the robots operate, calculate, and plan without human intervention. Finally, MASLab is one of the few robotics contests in the country to use a vision based robotics problem.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Textbook
Author:
Kaelbling, Leslie Pack
Date Added:
01/01/2005
Modeling Dynamics and Control II, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Second subject of two-term sequence on modeling, analysis and control of dynamic systems. Kinematics and dynamics of mechanical systems including rigid bodies in plane motion. Linear and angular momentum principles. Impact and collision problems. Linearization about equilibrium. Free and forced vibrations. Sensors and actuators. Control of mechanical systems. Integral and derivative action, lead and lag compensators. Root-locus design methods. Frequency-domain design methods. Applications to case-studies of multi-domain systems.

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Akylas, Triantaphyllos
Date Added:
01/01/2003
Modeling Dynamics and Control I, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First of two-term sequence on modeling, analysis and control of dynamic systems. Mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices. Analytical and computational solution of linear differential equations and state-determined systems. Laplace transforms, transfer functions. Frequency response, Bode plots. Vibrations, modal analysis. Open- and closed-loop control, instability. Time-domain controller design, introduction to frequency-domain control design techniques. Case studies of engineering applications.

Subject:
Functions
Mathematics
Material Type:
Full Course
Textbook
Author:
Dubowsky, Steven
Trumper, David L.
Date Added:
01/01/2005