Updating search results...

Search Resources

252 Results

View
Selected filters:
Finding Food in the Amazon
Rating
0.0 stars

In this activity, the students will investigate a variety of plants and animals common to the Amazon through research. They will determine the plant or animal characteristics that make them edible or useful for the trip and learn to categorize them by comparing similarities and/or differences.

Author:
TeachEngineering.org
Adventure Engineering,
Floating and Falling Flows
Rating
0.0 stars

Students discover fluid dynamics related to buoyancy through experimentation and optional photography. Using one set of fluids, they make light fluids rise through denser fluids. Using another set, they make dense fluids sink through a lighter fluid. In both cases, they see and record beautiful fluid motion. Activities are also suitable as class demonstrations. The natural beauty of fluid flow opens the door to seeing the beauty of physics in general.

Author:
Malinda Schaefer Zarske
Cody Taylor
Jean Hertzberg
Denise Carlson
Gala Camacho
TeachEngineering.org
Flow Visualization Laboratory, Department of Mechanical Engineering,
Flocculants: The First Step to Cleaner Water!
Rating
0.0 stars

Students experience firsthand one of the most common water treatment types in the industry today, flocculants. They learn how the amount of suspended solids in water is measured using the basic properties of matter and light. In addition, they learn about the types of solids that can be found in water and the reasons that some are easier to remove than others. Encompassing the concepts of force and motion, attraction and repulsion of charged particles, and properties of matter, during the associated activity students see scientific concepts they already understand through the eyes of engineers who apply them to the removal of solids from water via chemical flocculants.

Author:
Audrey Buttice
TeachEngineering.org
Marissa H. Forbes
STARS GK-12 Program,
Flow Charting App Inventor Tutorials
Rating
0.0 stars

Students design and create flow charts for the MIT App Inventor tutorials in this computer science activity about program analysis. In program analysis, which is based on determining the behavior of computer programs, flow charts are an important tool for tracing control flow. Control flow is a graphical representation of the logic present in a program and how the program works. Students work through tutorials, design and create flow charts about how the tutorials function, and present their findings to the class. In their final assessment, they create an additional flow chart for an advanced App Inventor tutorial. This activity prepares students with the knowledge and skills to use App Inventor in the future to design and create Android applications.

Author:
TeachEngineering.org
Rich Powers, Brian Sandall
IMPART RET Program, College of Information Science & Technology,
Flow Rates of Faucets and Rivers
Rating
0.0 stars

In the Flow Rate Experiment, students perform hands-on experiments with a common faucet, as well as work with the Engineering Our Water Living Lab to gain a better understanding of flow rate and how it pertains to engineering and applied science. Students calculate the flow rate of a faucet for three different levels (quarter blast, half blast, and full blast). Building on these calculations, students hypothesize about the flow rate in a nearby river, and then use the Engineering Our Water Living Lab to check their hypothesis. For this lesson to be effective, your students need to have a visual feel for the flow in a nearby river.

Author:
Civil and Environmental Engineering Department,
Karen Johnson
Bobby Rinehart
TeachEngineering.org
Mike Mooney
For Those Back Home...
Rating
0.0 stars

Students review information learned during the past five lessons and activities of the Introduction to Engineering unit. Working in teams, they create flyers and short quizzes about various types of engineering to share with the class and collect into a "Olympic Engineering Binder" for the class to keep.

Author:
Janet Yowell
Integrated Teaching and Learning Program,
Katherine Beggs
Denali Lander
TeachEngineering.org
Abigail Watrous
Forces and Graphing
Rating
0.0 stars

Use this activity to explore forces acting on objects, practice graphing experimental data, and introduce the algebra concepts of slope and intercept of a line. A wooden 2 x 4 beam is set on top of two scales. Students learn how to conduct an experiment by applying loads at different locations along the beam, recording the exact position of the applied load and the reaction forces measured by the scales at each end of the beam. In addition, students analyze the experiment data with the use of a chart and a table, and model/graph linear equations to describe relationships between independent and dependent variables.

Author:
GK-12 Program, Center for Engineering and Computing Education, College of Engineering and Information Technology,
Veronica Addison
John Brader
Jed Lyons
Ivanka Todorova
TeachEngineering.org
Forces on the Human Molecule
Rating
0.0 stars

Students conduct several simple lab activities to learn about the five fundamental load types that can act on structures: tension, compression, shear, bending and torsion. In this activity, students play the role of molecules in a beam that is subject to various loading schemes.

Author:
TeachEngineering.org
K-12 Outreach Office,
Forms of Linear Equations
Rating
0.0 stars

Students learn about four forms of equations: direct variation, slope-intercept form, standard form and point-slope form. They graph and complete problem sets for each, converting from one form of equation to another, and learning the benefits and uses of each.

Author:
TeachEngineering.org
VU Bioengineering RET Program, School of Engineering,
Aubrey McKelvey
Friction Force
Rating
0.0 stars

Students use LEGO® MINDSTORMS® robotics to help conceptualize and understand the force of friction. Specifically, they observe how different surfaces in contact result in different frictional forces. A LEGO robot is constructed to pull a two-wheeled trailer made of LEGO parts. The robot is programmed to pull the trailer 10 feet and trial runs are conducted on smooth and textured surfaces. The speed and motor power of the robot is kept constant in all trials so students observe the effect of friction between various combinations of surfaces and trailer wheels. To apply what they learn, students act as engineers and create the most effective car by designing the most optimal tires for given surface conditions.

Author:
AMPS GK-12 Program,
TeachEngineering.org
Akim Faisal
From Sunlight to Electric Current
Read the Fine Print
Rating
0.0 stars

The lesson will first explore the concept of current in electrical circuits. Current will be defined as the flow of electrons. Photovoltaic (PV) cell properties will then be introduced. Generally constructed of silicon, photovoltaic cells contain a large number of electrons BUT they can be thought of as "frozen" in their natural state. A source of energy is required to "free" these electrons if we wish to create current. Light from the sun provides this energy. This will lead to the principle of "Conservation of Energy." Finally, with a basic understanding of the circuits through Ohm's law, students will see how the energy from the sun can be used to power everyday items, including vehicles. This lesson utilizes the engineering design activity of building a solar car to help students learn these concepts.

Subject:
Applied Science
Engineering
Physical Science
Physics
Space Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Rahmin Sarabi
Roni Prucz
TeachEngineering.org
Techtronics Program,
Date Added:
09/18/2014
GPS on the Move
Read the Fine Print
Rating
0.0 stars

During a scavenger hunt and an art project, students learn how to use a handheld GPS receiver for personal navigation. Teachers can request assistance from the Institute of Navigation to find nearby members with experience in using GPS and in locating receivers to use.

Subject:
Applied Science
Ecology
Engineering
Geoscience
Life Science
Physical Science
Space Science
Technology
Material Type:
Activity/Lab
Lesson Plan
Author:
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Matt Lundberg
Penny Axelrad
TeachEngineering.org
Date Added:
09/18/2014
Geometry
Rating
0.0 stars

Geometry is the branch of mathematics which investigates the relations, properties, and measurement of solids, surfaces, lines, and angles. It is the science of the relations of space. Sourse: Webster's Dictionary

Author:
TeachEngineering.org
K-12 Outreach,
Getting it Right!
Rating
0.0 stars

In this lesson, students will investigate error. As shown in earlier activities from navigation lessons 1 through 3, without an understanding of how errors can affect your position, you cannot navigate well. Introducing accuracy and precision will develop these concepts further. Also, students will learn how computers can help in navigation. Often, the calculations needed to navigate accurately are time consuming and complex. By using the power of computers to do calculations and repetitive tasks, one can quickly see how changing parameters likes angles and distances and introducing errors will affect their overall result.

Author:
Janet Yowell
Matt Lippis
Malinda Schaefer Zarske
Penny Axelrad
Integrated Teaching and Learning Program,
Jeff White
TeachEngineering.org
Getting to the Point
Rating
0.0 stars

In this lesson, students learn how to determine location by triangulation. We describe the process of triangulation and practice finding your location on a worksheet, in the classroom, and outdoors.

Author:
Janet Yowell
Matt Lippis
Malinda Schaefer Zarske
Penny Axelrad
Integrated Teaching and Learning Program,
TeachEngineering.org
Go Public: Osteoporosis Brochure
Rating
0.0 stars

Students will answer the Challenge Question and use the acquired learning from Lesson 1, "Fix the Hip Challenge" and Lesson 2, "Skeletal System Overview"to construct an informative brochure addressing osteoporosis and the role biomedical engineering plays in diagnosing and preventing this disease.

Author:
TeachEngineering.org
VU Bioengineering RET Program,
Morgan Evans (Primary Author)
A Good Foundation
Rating
0.0 stars

Students explore the effects of regional geology on bridge foundation, including the variety of soil conditions found beneath foundations. They learn about shallow and deep foundations, as well as the concepts of bearing pressure and settlement.

Author:
Malinda Schaefer Zarske
Natalie Mach
Denise W. Carlson
Integrated Teaching and Learning Program, College of Engineering,
Denali Lander
Jonathan S. Goode
TeachEngineering.org
Christopher Valenti
Joe Friedrichsen
The Grand Challenge
Rating
0.0 stars

This lesson introduces the MRI Safety Grand Challenge question. Students are asked to write journal responses to the question and brainstorm what information they will need to answer the question. The ideas are shared with the class and recorded. Students then watch a video interview with a real life researcher to gain a professional perspective on MRI safety and brainstorm any additional ideas. The associated activity provides students the opportunity to visualize magnetic fields.

Author:
TeachEngineering.org
VU Bioengineering RET Program, School of Engineering,
Eric Appelt
The Grand Challenge: Simulating Human Vision
Rating
0.0 stars

Students are introduced to the Robotics Peripheral Vision Grand Challenge question. They are asked to write journal responses to the question and brainstorm what information they require to answer the question. Their ideas are shared with the class and recorded. Then, students share their ideas with each other and brainstorm any additional ideas. Next, students draw a basis for the average peripheral vision of humans and then compare that range to the range of two different focal lengths in a camera. Through the associated activity provides, students see the differences between human and computer vision.

Author:
Anna Goncharova
Mark Gonyea
TeachEngineering.org
VU Bioengineering RET Program,
Rachelle Klinger
Graph Theory in Drama
Rating
0.0 stars

Students use graph theory to create social graphs for their own social networks and apply what learn to create a graph representing the social dynamics found in a dramatic text. Students then derive meaning based on what they know about the text from the graphs they created. Students learn graph theory vocabulary, as well as engineering applications of graph theory.

Author:
TeachEngineering.org
Ramsey Young, Brian Sandall
IMPART RET Program, College of Information Science & Technology,