Updating search results...

Search Resources

3249 Results

View
Selected filters:
  • Physical Science
Amanda's Absence: Should Vioxx Be Kept Off the Market?
Rating
0.0 stars

When chronic pain forces a top student to withdraw from college, biology instructor Dr. Sharpe learns that medications (in this case, Vioxx) may be removed from the market for many reasons, including safety concerns. As the case unfolds, students learn how the FDA balances drug safety against medical needs. As written, the case is appropriate for a non-majors biology course. It could also be adapted for use in a more advanced course in cell biology, pharmacology, or biochemistry, or modified to explore statistical analysis, specific analytical methods used for risk/benefit analysis, or bioethical issues.

Author:
Dan Johnson
The Amazing Red Planet
Read the Fine Print
Rating
0.0 stars

The purpose of this lesson is to introduce students to the planet Mars. This lesson will begin by discussing the location and size of Mars relative to Earth, as well as introduce many interesting facts about this red planet. Next, the history of Martian exploration is reviewed and students discover why scientists are so interested in studying this mysterious planet. The lesson concludes with students learning about future plans to visit Mars.

Subject:
Applied Science
Astronomy
Engineering
Physical Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Amazing Science Experiments That You Can Do At Home Cool Science Experiments
Rating
0.0 stars

HooplakidzLab brings to you 10 amazing science experiments that you can easily do at home using everyday household items. Welcome To HooplakidzLab where science is fun. Today we are here with some of the coolest science experiments you and your little one can try at home.

Author:
HooplaKidzLab
Amines- The Organic bases
Rating
0.0 stars

يتناول هذا الفيديودراسة الأمينات من حيث : تسميتها- وتركيبها وخواصها

Author:
Dr. Vikas Vijayvargiya
Ampere's Law
Rating
0.0 stars

The lesson begins with a demonstration introducing students to the force between two current carrying loops, comparing the attraction and repulsion between the loops to that between two magnets. After formal lecture on Ampere's law, students begin to use the concepts to calculate the magnetic field around a loop. This is applied to determine the magnetic field of a toroid, imagining a toroid as a looped solenoid.

Author:
VU Bioengineering RET Program, School of Engineering,
Eric Appelt
Amusement Park Ride: Ups and Downs in Design
Rating
0.0 stars

Students design, build and test model roller coasters using foam tubing. The design process integrates energy concepts as they test and evaluate designs that address the task as an engineer would. The goal is for students to understand the basics of engineering design associated with kinetic and potential energy to build an optimal roller coaster. The marble starts with potential energy that is converted to kinetic energy as it moves along the track. The diameter of the loops that the marble traverses without falling out depends on the kinetic energy obtained by the marble.

Author:
Making the Connection,
C. Shade
Marthy Cyr
Analysis of Biological Networks (BE.440), Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Essigmann, John
Sasisekharan, Ram
Date Added:
01/01/2004
Analytical Chemistry
Rating
0.0 stars

Analytical chemistry is the branch of chemistry dealing with measurement, both qualitative and quantitative. This discipline is also concerned with the chemical composition of samples. In the field, analytical chemistry is applied when detecting the presence and determining the quantities of chemical compounds, such as lead in water samples or arsenic in tissue samples. It also encompasses many different spectrochemical techniques, all of which are used under various experimental conditions. This branch of chemistry teaches the general theories behind the use of each instrument as well analysis of experimental data. Upon successful completion of this course, the student will be able to: Demonstrate a mastery of various methods of expressing concentration; Use a linear calibration curve to calculate concentration; Describe the various spectrochemical techniques as described within the course; Use sample data obtained from spectrochemical techniques to calculate unknown concentrations or obtain structural information where applicable; Describe the various chromatographies described within this course and analyze a given chromatogram; Demonstrate an understanding of electrochemistry and the methods used to study the response of an electrolyte through current of potential. (Chemistry 108)

Analytical Chemistry
Rating
0.0 stars

Analytical chemistry spans nearly all areas of chemistry but involves the development of tools and methods to measure physical properties of substances and apply those techniques to the identification of their presence (qualitative analysis) and quantify the amount present (quantitative analysis) of species in a wide variety of settings.

Analytical Chemistry 2.0
Rating
0.0 stars

Analytical chemistry is more than a collection of analytical methods and an understanding of equilibrium chemistry; it is an approach to solving chemical problems. Although equilibrium chemistry and analytical methods are important, their coverage should not come at the expense of other equally important topics. The introductory course in analytical chemistry is the ideal place in the undergraduate chemistry curriculum for exploring topics such as experimental design, sampling, calibration strategies, standardization, optimization, statistics, and the validation of experimental results. Analytical methods come and go, but best practices for designing and validating analytical methods are universal. Because chemistry is an experimental science it is essential that all chemistry students understand the importance of making good measurements.

Author:
David Harvey 
Analytical Techniques for Studying Environmental and Geologic Samples, Spring 2011
Rating
0.0 stars

This is a laboratory course supplemented by lectures that focus on selected analytical facilities that are commonly used to determine the mineralogy, elemental abundance and isotopic ratios of Sr and Pb in rocks, soils, sediments and water.

Author:
Boyle, Edward
Chatterjee, Nilanjan
Dudas, Francis
Bowring, Samuel
Anchors Away
Rating
0.0 stars

In this activity, students discover the relationship between an object's mass and the amount of space it takes up (its volume). Students learn about the concept of displacement and how an object can float if it displaces enough water, and the concept of density and its relationship to mass and volume.

Author:
TeachEngineering.org
Adventure Engineering,
Android Acceleration
Rating
0.0 stars

Students prepare for the associated activity in which they investigate acceleration by collecting acceleration vs. time data using the accelerometer of a sliding Android device. Based on the experimental set-up for the activity, students form hypotheses about the acceleration of the device. Students will investigate how the force on the device changes according to Newton's Second Law. Different types of acceleration, including average, instantaneous and constant acceleration, are introduced. Acceleration and force is described mathematically and in terms of processes and applications.

Author:
Scott Burns, Brian Sandall
IMPART RET Program, College of Information Science & Technology,
Android Pendulums
Rating
0.0 stars

Students investigate the motion of a simple pendulum through direct observation and data collection using Android® devices. First, student groups create pendulums that hang from the classroom ceiling, using Android smartphones or tablets as the bobs, taking advantage of their built-in accelerometers. With the Android devices loaded with the (provided) AccelDataCapture app, groups explore the periodic motion of the pendulums, changing variables (amplitude, mass, length) to see what happens, by visual observation and via the app-generated graphs. Then teams conduct formal experiments to alter one variable while keeping all other parameters constant, performing numerous trials, identifying independent/dependent variables, collecting data and using the simple pendulum equation. Through these experiments, students investigate how pendulums move and the changing forces they experience, better understanding the relationship between a pendulum's motion and its amplitude, length and mass. They analyze the data, either on paper or by importing into a spreadsheet application. As an extension, students may also develop their own algorithms in a provided App Inventor framework in order to automatically note the time of each period.

Author:
IMPART RET Program,
Doug Bertelsen
Animal Density and Track Counts: Understanding the Nature of Observations Based on Animal Movements
Rating
0.0 stars

Counting animals to estimate their population sizes is often essential for their management and conservation. Since practitioners frequently rely on indirect observations of animals, it is important to better understand the relationship between such indirect indices and animal abundance. The Formozov-Malyshev-Pereleshin (FMP) formula provides a theoretical foundation for understanding the relationship between animal track counts and the true density of species. Although this analytical method potentially has universal applicability wherever animals are readily detectable by their tracks, it has long been unique to Russia and remains widely underappreciated. In this paper, we provide a test of the FMP formula by isolating the influence of animal travel path tortuosity (i.e., convolutedness) on track counts. We employed simulations using virtual and empirical data, in addition to a field test comparing FMP estimates with independent estimates from line transect distance sampling. We verify that track counts (total intersections between animals and transects) are determined entirely by density and daily movement distances. Hence, the FMP estimator is theoretically robust against potential biases from specific shapes or patterns of animal movement paths if transects are randomly situated with respect to those movements (i.e., the transects do not influence animals’ movements). However, detectability (the detection probability of individual animals) is not determined simply by daily travel distance but also by tortuosity, so ensuring that all intersections with transects are counted regardless of the number of individual animals that made them becomes critical for an accurate density estimate. Additionally, although tortuosity has no bearing on mean track encounter rates, it does affect encounter rate variance and therefore estimate precision. We discuss how these fundamental principles made explicit by the FMP formula have widespread implications for methods of assessing animal abundance that rely on indirect observations.

Author:
Derek Keeping
Rick Pelletier
Another Can of Bull?  Do Energy Drinks Really Provide a Source of Energy?
Rating
0.0 stars

This case is a "clicker" adaptation of a similarly titled case by Merle Heidemann and Gerald Urquhart of Michigan State University, "A Can of Bull?" The story introduces students to basic principles of metabolism and energy through a biochemical analysis of commonly available "energy drinks" that many students purchase at relatively high prices. Students learn to define energy in a biological/nutritional context, identify valid biochemical sources of energy, discuss how foods are metabolized to generate ATP, and critically evaluate marketing claims for various energy drinks. The case can be used in introductory level courses to introduce these principles or as a review of basic biochemistry and nutrition for upper-level students in nutrition, physiology, or biochemistry courses. The case is presented in class using a PowerPoint (~2.3MB) that is punctuated by multiple-choice questions students answer using personal response systems, or "clickers."

Author:
Cheryl D. Davis
Nancy A. Rice
Anti-Gravity Mirror
Rating
0.0 stars

In this demonstration, amaze learners by performing simple tricks using mirrors. These tricks take advantage of how a mirror can reflect your right side so it appears to be your left side. To make the effect more dramatic, cover the mirror with a cloth, climb onto the table, straddle the mirror, and then drop the cloth as you appear to "take off." This resource contains information about how this trick was applied during the making of the movie "Star Wars."

Author:
The Exploratorium
California Department of Education
NEC Foundation of America
National Science Foundation