In this course we will explore the new emerging field of pathogen-induced …
In this course we will explore the new emerging field of pathogen-induced chronic diseases. Work in this field has redefined the causes of some major disorders, such as ulcers. By reading the primary research literature we will learn about the molecular mechanisms through which pathogens cause disease. The diseases that we cover will be introduced with a short patient case study. We will discuss the bacterium Helicobacter pylori and gastric disease, HPV and cervical cancer, hepatitis C virus and liver disease, Epstein-Barr virus and lymphoma, Cytomegalovirus and atherosclerosis, as well as diabetes and multiple sclerosis. We will study technical advances in the fight against microbes and explore future directions for new treatment strategies of chronic infections and inflammation. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
Using a website simulation tool, students build on their understanding of random …
Using a website simulation tool, students build on their understanding of random processes on networks to interact with the graph of a social network of individuals and simulate the spread of a disease. They decide which two individuals on the network are the best to vaccinate in an attempt to minimize the number of people infected and "curb the epidemic." Since the results are random, they run multiple simulations and compute the average number of infected individuals before analyzing the results and assessing the effectiveness of their vaccination strategies.
Introduces the basic methods for infectious disease epidemiology and case studies of …
Introduces the basic methods for infectious disease epidemiology and case studies of important disease syndromes and entities. Methods include definitions and nomenclature, outbreak investigations, disease surveillance, case-control studies, cohort studies, laboratory diagnosis, molecular epidemiology, dynamics of transmission, and assessment of vaccine field effectiveness. Case-studies focus on acute respiratory infections, diarrheal diseases, hepatitis, HIV, tuberculosis, sexually transmitted diseases, malaria, and other vector-borne diseases.
This lesson describes the major components and functions of the immune system …
This lesson describes the major components and functions of the immune system and the role of engineers in keeping the body healthy (e.g., vaccinations and antibiotics, among other things). This lesson also discusses how an astronaut's immune system is suppressed during spaceflight due to stress and other environmental factors.
The course covers basic concepts of biomedical engineering and their connection with …
The course covers basic concepts of biomedical engineering and their connection with the spectrum of human activity. It serves as an introduction to the fundamental science and engineering on which biomedical engineering is based. Case studies of drugs and medical products illustrate the product development-product testing cycle, patent protection, and FDA approval. It is designed for science and non-science majors.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.