Updating search results...

Search Resources

5 Results

View
Selected filters:
  • vaccine
Chronic Infection and Inflammation: What are the Consequences on Your Health?, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this course we will explore the new emerging field of pathogen-induced chronic diseases. Work in this field has redefined the causes of some major disorders, such as ulcers. By reading the primary research literature we will learn about the molecular mechanisms through which pathogens cause disease. The diseases that we cover will be introduced with a short patient case study. We will discuss the bacterium Helicobacter pylori and gastric disease, HPV and cervical cancer, hepatitis C virus and liver disease, Epstein-Barr virus and lymphoma, Cytomegalovirus and atherosclerosis, as well as diabetes and multiple sclerosis. We will study technical advances in the fight against microbes and explore future directions for new treatment strategies of chronic infections and inflammation. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Textbook
Author:
Frickel, Eva
Gredmark, Sara
Date Added:
01/01/2007
Curb the Epidemic!
Rating
0.0 stars

Using a website simulation tool, students build on their understanding of random processes on networks to interact with the graph of a social network of individuals and simulate the spread of a disease. They decide which two individuals on the network are the best to vaccinate in an attempt to minimize the number of people infected and "curb the epidemic." Since the results are random, they run multiple simulations and compute the average number of infected individuals before analyzing the results and assessing the effectiveness of their vaccination strategies.

Author:
Complex Systems Science Laboratory,
Debbie Jenkinson and Susan Frennesson, The Pine School, Stuart, FL
Garrett Jenkinson and John Goutsias, The Johns Hopkins University, Baltimore, MD
Epidemiology of Infectious Diseases
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces the basic methods for infectious disease epidemiology and case studies of important disease syndromes and entities. Methods include definitions and nomenclature, outbreak investigations, disease surveillance, case-control studies, cohort studies, laboratory diagnosis, molecular epidemiology, dynamics of transmission, and assessment of vaccine field effectiveness. Case-studies focus on acute respiratory infections, diarrheal diseases, hepatitis, HIV, tuberculosis, sexually transmitted diseases, malaria, and other vector-borne diseases.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Case Study
Full Course
Homework/Assignment
Lecture Notes
Syllabus
Author:
Kenrad Nelson
Date Added:
02/16/2011
Fighting Back! (Lesson)
Read the Fine Print
Rating
0.0 stars

This lesson describes the major components and functions of the immune system and the role of engineers in keeping the body healthy (e.g., vaccinations and antibiotics, among other things). This lesson also discusses how an astronaut's immune system is suppressed during spaceflight due to stress and other environmental factors.

Subject:
Anatomy/Physiology
Applied Science
Engineering
Life Science
Material Type:
Activity/Lab
Lesson Plan
Author:
Denali Lander
Integrated Teaching and Learning Program,
Janet Yowell
Malinda Schaefer Zarske
Teresa Ellis
Date Added:
09/18/2014
Frontiers in Biomedical Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course covers basic concepts of biomedical engineering and their connection with the spectrum of human activity. It serves as an introduction to the fundamental science and engineering on which biomedical engineering is based. Case studies of drugs and medical products illustrate the product development-product testing cycle, patent protection, and FDA approval. It is designed for science and non-science majors.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Full Course
Author:
Mark Saltzman
Date Added:
02/16/2011