Updating search results...

Search Resources

710 Results

View
Selected filters:
  • Full Course
Marine Chemistry, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This course is an introduction to chemical oceanography. It describes reservoir models and residence time, major ion composition of seawater, inputs to and outputs from the ocean via rivers, the atmosphere, and the sea floor. Biogeochemical cycling within the oceanic water column and sediments, emphasizing the roles played by the formation, transport, and alteration of oceanic particles and the effects that these processes have on seawater composition. Cycles of carbon, nitrogen, phosphorus, oxygen, and sulfur. Uptake of anthropogenic carbon dioxide by the ocean. Material presented through lectures and student-led presentation and discussion of recent papers."

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Textbook
Author:
Casciotti, Karen
Doney, Scott
Martin, William
Tivey, Meg
Toole, Dierdre
Date Added:
01/01/2006
Marine Chemistry Seminar, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The structure of the course is designed to have students acquire a broad understanding of the field of Marine Chemistry; to get a feel for experimental methodologies, the results that they have generated and the theoretical insights they have yielded to date.

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Textbook
Author:
Mooy, Benjamin Van
Date Added:
01/01/2006
Marine Organic Geochemistry, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Provides an understanding of the distribution of organic carbon (OC) in marine sediments from a global and molecular-level perspective. Surveys the mineralization and preservation of OC in the water column and within anoxic and oxic marine sediments. Topics include: OC composition, reactivity and budgets within, and fluxes through, major reservoirs; microbial recycling pathways for OC; models for OC degradation and preservation; role of anoxia in OC burial; relationships between dissolved and particulate (sinking and suspended) OC; methods for characterization of sedimentary organic matter; application of biological markers as tools in oceanography. Both structural and isotopic aspects are covered.

Subject:
Chemistry
Oceanography
Physical Science
Material Type:
Full Course
Textbook
Author:
Eglinton, Timothy
Date Added:
01/01/2005
Materials Processing, Spring 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The goal of 3.044 is to teach cost-effective and sustainable production of solid material with a desired geometry, structure or distribution of structures, and production volume. Toward this end, it is organized around different types of phase transformations which determine the structure in various processes for making materials, in roughly increasing order of entropy change during those transformations: solid heat treatment, liquid-solid processing, fluid behavior, deformation processing, and vapor-solid processing. The course ends with several lectures that place the subject in the context of society at large.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Schuh, Chris
Date Added:
01/01/2013
Materials Project Laboratory, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

As its name implies, the 3.042 Materials Project Laboratory involves working with such operations as investment casting of metals, injection molding of polymers, and sintering of ceramics. After all the abstraction and theory in the lecture part of the DMSE curriculum, many students have found this hands-on experience with materials to be very fun stuff - several have said that 3.042/3.082 was their favorite DMSE subject. The lab is more than operating processing equipment, however. It is intended also to emulate professional practice in materials engineering project management, with aspects of design, analysis, teamwork, literature and patent searching, web creation and oral presentation, and more.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Chiang, Yet-Ming
Roylance, David
Date Added:
01/01/2008
Materials at Equilibrium (SMA 5111), Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Laws of thermodynamics: general formulation and applications to mechanical, electromagnetic and electrochemical systems, solutions, and phase diagrams. Computation of phase diagrams. Statistical thermodynamics and relation between microscopic and macroscopic properties, including ensembles, gases, crystal lattices, phase transitions. Applications to phase stability and properties of mixtures. Computational modeling. Interfaces.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Ceder, Gerbrand
Date Added:
01/01/2003
Materials for Biomedical Applications, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to the interactions between cells and surfaces of biomaterials. Surface chemistry and physics of selected metals, polymers, and ceramics. Surface characterization methodology. Modification of biomaterials surfaces. Quantitative assays of cell behavior in culture. Biosensors and microarrays. Bulk properties of implants. Acute and chronic response to implanted biomaterials. Topics in biomimetics, drug delivery, and tissue engineering. Laboratory demonstrations.

Subject:
Chemistry
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Mayes, Anne
Date Added:
01/01/2006
Mathematical Exposition, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course provides techniques of effective presentation of mathematical material. Each section of this course is associated with a regular mathematics subject, and uses the material of that subject as a basis for written and oral presentations. The section presented here is on chaotic dynamical systems.

Subject:
Mathematics
Material Type:
Full Course
Textbook
Author:
Carberry, Emma
Date Added:
01/01/2005
Mathematical Methods for Engineers II, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Scientific computing: Fast Fourier Transform, finite differences, finite elements, spectral method, numerical linear algebra. Complex variables and applications. Initial-value problems: stability or chaos in ordinary differential equations, wave equation versus heat equation, conservation laws and shocks, dissipation and dispersion. Optimization: network flows, linear programming. Includes one computational project.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Strang, Gilbert
Date Added:
01/01/2005
Mathematical Methods for Engineers II, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Scientific computing: Fast Fourier Transform, finite differences, finite elements, spectral method, numerical linear algebra. Complex variables and applications. Initial-value problems: stability or chaos in ordinary differential equations, wave equation versus heat equation, conservation laws and shocks, dissipation and dispersion. Optimization: network flows, linear programming. Includes one computational project.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Strang, Gilbert
Date Added:
01/01/2006
Mathematical Methods in Nanophotonics, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Topics vary from year to year. Topic for Fall: Eigenvalues of random matrices. How many are real? Why are the spacings so important? Subject covers the mathematics and applications in physics, engineering, computation, and computer science. This course covers algebraic approaches to electromagnetism and nano-photonics. Topics include photonic crystals, waveguides, perturbation theory, diffraction, computational methods, applications to integrated optical devices, and fiber-optic systems. Emphasis is placed on abstract algebraic approaches rather than detailed solutions of partial differential equations, the latter being done by computers.

Subject:
Applied Science
Computer Science
Material Type:
Full Course
Textbook
Author:
Johnson, Steven
Date Added:
01/01/2008
Mathematics for Materials Scientists and Engineers, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course covers the mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from the materials science and engineering core courses (3.012 and 3.014) to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, and fourier analysis. Users may find additional or updated materials at Professor Carter's 3.016 course Web site.

Subject:
Calculus
Mathematics
Material Type:
Full Course
Textbook
Author:
Carter, W. Craig
Date Added:
01/01/2005
Measure and Integration, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Lebesgue's integration theory with applications to analysis, including an introduction to convolution and the Fourier transform.

Subject:
Mathematics
Material Type:
Full Course
Textbook
Author:
Viaclovsky, Jeffrey Alan
Date Added:
01/01/2003
Mechanical Assembly and Its Role in Product Development, Fall 2002
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduces mechanical and economic models of assemblies and assembly automation on two levels. "Assembly in the small" comprises basic engineering models of rigid and compliant part mating and explains the operation of the Remote Center Compliance. "Assembly in the large" takes a system view of assembly, including the notion of product architecture, feature-based design and computer models of assemblies, analysis of mechanical constraint, assembly sequence analysis, tolerances, system-level design for assembly and JIT methods, and economics of assembly automation. Case studies and current research included. Class exercises and homework include analyses of real assemblies, the mechanics of part mating, and a semester long project.

Subject:
Applied Science
Architecture and Design
Material Type:
Full Course
Textbook
Author:
Whitney, Daniel
Date Added:
01/01/2002
Mechanical Behavior of Materials, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, fracture and fatigue of materials including crystalline and amorphous metals, semiconductors, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. We will cover special topics in mechanical behavior for material systems of your choice, with reference to current research and publications."

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
van Vliet, Krystyn
Date Added:
01/01/2008
Mechanical Behavior of Plastics, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course is aimed at presenting the concepts underlying the response of polymeric materials to applied loads. These will include both the molecular mechanisms involved and the mathematical description of the relevant continuum mechanics. It is dominantly an "engineering" subject, but with an atomistic flavor. It covers the influence of processing and structure on mechanical properties of synthetic and natural polymers: Hookean and entropic elastic deformation, linear viscoelasticity, composite materials and laminates, yield and fracture.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Roylance, David
Date Added:
01/01/2007
Mechanical Properties of Materials, Spring 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Phenomenology of mechanical behavior of materials at the macroscopic level. Relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics include: elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples drawn from a variety of classes of materials including: metals, ceramics, polymers, thin films, composites, and cellular materials.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Gibson, Lorna J.
Date Added:
01/01/2003
Mechanical Properties of Materials, Spring 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Phenomenology of mechanical behavior of materials at the macroscopic level. Relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics include: elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Case studies and examples drawn from a variety of classes of materials including: metals, ceramics, polymers, thin films, composites, and cellular materials.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Textbook
Author:
Gibson, Lorna J.
Date Added:
01/01/2004
Mechanical Properties of Rocks, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A survey of the mechanical behavior of rocks in natural geologic situations. Topics: brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure-solution processes. Results of field petrologic and structural studies compared to data from experimental structural geology.

Subject:
Atmospheric Science
Physical Science
Material Type:
Full Course
Textbook
Author:
Evans, J
Date Added:
01/01/2005
Mechanics and Materials I, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to statics and the mechanics of deformable solids. Emphasis on the three basic principles of equilibrium, geometric compatibility, and material behavior. Stress and its relation to force and moment; strain and its relation to displacement; linear elasticity with thermal expansion. Failure modes. Application to simple engineering structures such as rods, shafts, beams, and trusses. Application to design. Introduction to material selection. This course provides an introduction to the mechanics of solids with applications to science and engineering. We emphasize the three essential features of all mechanics analyses, namely: (a) the geometry of the motion and/or deformation of the structure, and conditions of geometric fit, (b) the forces on and within structures and assemblages; and (c) the physical aspects of the structural system (including material properties) which quantify relations between the forces and motions/deformation.

Subject:
Physical Science
Physics
Material Type:
Full Course
Textbook
Author:
Socrate, Simona
Date Added:
01/01/2006