Updating search results...

Search Resources

23 Results

View
Selected filters:
  • Manufacturing
Architectural Construction and Computation, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This class investigates the use of computers in architectural design and construction. It begins with a pre-prepared design computer model, which is used for testing and process investigation in construction. It then explores the process of construction from all sides of the practice: detail design, structural design, and both legal and computational issues.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Career and Technical Education
Manufacturing
Material Type:
Full Course
Textbook
Author:
Sass, Lawrence
Turkel, Joel
Date Added:
01/01/2005
Architectural Design, Level II: Material and Tectonic Transformations: The Herreshoff Museum, Fall 2003
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This semester students are asked to transform the Hereshoff Museum in Bristol, Rhode Island, through processes of erasure and addition. Hereshoff Manufacturing was recognized as one of the premier builders of America's Cup racing boats between 1890's and 1930's. The studio however, is about more then the program. It is about land, water, and wind and the search for expressing materially and tectonically the relationships between these principle conditions. That is, where the land is primarily about stasis (docking, anchoring and referencing our locus), water's fluidity holds the latent promise of movement and freedom. Movement is activated by wind, allowing for negotiating the relationship between water and land.

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Career and Technical Education
Manufacturing
Visual Arts
Material Type:
Full Course
Textbook
Author:
Lukez, Paul
Date Added:
01/01/2003
Building Technology III: Building Structural Systems, Fall 2004
Rating
0.0 stars

This course addresses advanced structures, exterior envelopes and contemporary production technologies. It continues the exploration of structural elements and systems, and expands to include more complex determinante, indeterminate, long-span and high-rise systems. It covers topics such as reinforced concrete, steel and engineered wood design, and provides an introduction to tensile systems. Lectures also address the contemporary exterior envelope with an emphasis on their performance attributes and advanced manufacturing technologies.

Author:
Fernandez, John
Cabinetmaking Model
Rating
0.0 stars

***LOGIN REQUIRED*** This competency-_based course prepares students for entry_ level positions in the cabinetmaking industry. Included in the course are cabinet design and styles, the use of advanced machines and equipment, computer_-aided manufacturing, special materials and commercial wood finishes and including green sustainable techniques and materials. Students will demonstrate their knowledge and skills by designing and building advanced wood projects. This course is for juniors and seniors only and may be taken for two years.

Cultural History of Technology, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The subject of this course is the historical process by which the meaning of "technology" has been constructed. Although the word itself is traceable to the ancient Greek root teckhne (meaning art), it did not enter the English language until the 17th century, and did not acquire its current meaning until after World War I. The aim of the course, then, is to explore various sectors of industrializing 19th and 20th century Western society and culture with a view to explaining and assessing the emergence of technology as a pivotal word (and concept) in contemporary (especially Anglo-American) thought and expression.

Subject:
Applied Science
Arts and Humanities
Career and Technical Education
Engineering
Manufacturing
World Cultures
Material Type:
Full Course
Textbook
Author:
Marx, Leo
Williams, Rosalind
Date Added:
01/01/2005
Economic & Environmental Issues in Materials Selection, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Choice of material has implications throughout the life-cycle of a product, influencing many aspects of economic and environmental performance. This course will provide a survey of methods for evaluating those implications. Lectures will cover topics in material choice concepts, fundamentals of engineering economics, manufacturing economics modeling methods, and life-cycle environmental evaluation.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Manufacturing
Material Type:
Full Course
Textbook
Author:
Kirchain, Randolph
Date Added:
01/01/2005
Elements of Mechanical Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliverables of their project. Student assessment is based upon mastery of the course materials and the student's ability to synthesize, model and fabricate a mechanical device subject to engineering constraints (e.g. cost and time/schedule)."

Subject:
Applied Science
Career and Technical Education
Chemistry
Engineering
Genetics
Life Science
Manufacturing
Physical Science
Material Type:
Full Course
Textbook
Author:
Culpepper, Martin
Date Added:
01/01/2009
Fundamentals of Photovoltaics, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment.

This course is one of many OCW Energy Courses, and it is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute–wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.

Subject:
Applied Science
Career and Technical Education
Environmental Science
Manufacturing
Material Type:
Full Course
Textbook
Author:
Buonassisi, Tonio
Date Added:
01/01/2008
A Green Light for CFLs?
Rating
0.0 stars

In this problem-based learning case, three housemates in an environmentally-themed college house debate the pros and cons of compact fluorescent lamps (CFLs) over incandescent lamps. The students raise issues of the cost difference between the lamps (both in the short and long term), energy use and greenhouse gas production in the manufacture and use of the lamps, and the mercury content in CFLs and the risks that poses to people and the environment. Students are asked to identify the information needed to evaluate the choice between the two lamp types, and then use a published life-cycle analysis to find and evaluate that information. To conclude, they make a decision and argue for it using quantitative evidence and reasoning. The case was developed for an intermediate-level course designed to help environmental studies students understand the role of scientific information and scientific thinking in resolving complex environmental problems.

Author:
David L. Boose
Introduction to Polymers
Rating
0.0 stars

This unit examines the use of polymers and demonstrates how the properties of polymers are controlled by their molecular structure. You will learn how this structure determines which polymer to use for a particular product. You will also explore the manufacturing techniques used and the how the use of polymerisation can be used to control the structure of polymers.

Machine Tool Technology Model
Rating
0.0 stars

***LOGIN REQUIRED*** Introduces the student to the changing era of machining technology, emphasizing terminology, referencing and applications related to manufacturing environments. The fundamental use of bench tools, layout procedures, materials, precision measuring tools, machining processes, drilling and cut-off machines and other machining/manufacturing processes will be stressed. Skill competencies and standards will be identified.Students will perform basic lathe operations, which will consist of facing, center-drilling, chuck turning, turning between centers, boring, grooving, tapers, knurling, and single point threading.Teaches students to identify the major parts of the vertical mill, align a vise, use an indicator, edge finder, and boring head, determine speeds and feeds perform simple indexing, mill flat, square surfaces and slots, drill, bore, and tap holes.Covers computer numerical control (CNC) lathe and mill operations, control functions, the letter address system, the program format, and machine setup. G & M codes, control functions, the letter address system, and math issues related to CNC are included.

Manufacturing
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

How are designs turned into products? What resources, materials and methods used and what set of activities that goes under the heading of 'manufacturing'? This unit will introduce manufacturing as a system and will describe some of the many different ways of making products. We will illustrate how the required properties of the materials in a product influence the choice of manufacturing process used.

Subject:
Career and Technical Education
Manufacturing
Material Type:
Activity/Lab
Reading
Syllabus
Date Added:
09/07/2007
Manufacturing System and Supply Chain Design, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

15.763 focuses on decision making for system design, as it arises in manufacturing systems and supply chains. Students are exposed to frameworks and models for structuring the key issues and trade-offs. The class presents and discusses new opportunities, issues and concepts introduced by the internet and e-commerce. It also introduces various models, methods and software tools for logistics network design, capacity planning and flexibility, make-buy, and integration with product development. Industry applications and cases illustrate concepts and challenges. Recommended for operations management concentrators. Second half-term subject.

Subject:
Applied Science
Business and Communication
Career and Technical Education
Environmental Science
Manufacturing
Material Type:
Full Course
Textbook
Author:
Graves, Stephen
Simchi-Levi, David
Date Added:
01/01/2005
Metals 1 and 2 Model
Rating
0.0 stars

***LOGIN REQUIRED*** Metals 1 and 2 CORE provides students with an understanding of manufacturing processes and systems common to careers in machine tool and materials forming industries. Topics include the interpretation and layout of machined and formed-part prints; the cutting, shaping, fastening, and finishing of machine tools; and casting, forging, molding, cold forming, and shearing processes.

People-Centred Designing
Rating
0.0 stars

Designed products surround us all and range from bus tickets to buildings. This unit focuses firmly on usability and the increasingly important phenomenon of people-centred design. It aims to inform consumers of design (i.e., all of us) about this crucial characteristic of design. The unit is derived from the Open University course T211 on Design and Designing, but as well as stimulating interest in areas of concern for producers of design it might also provide an introduction to engineering, manufacturing and business studies.

Product Design and Development, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Covers modern tools and methods for product design and development. The cornerstone is a project in which teams of management, engineering, and industrial design students conceive, design, and prototype a physical product. Class sessions employ cases and hands-on exercises to reinforce the key ideas. Topics include: product planning, identifying customer needs, concept generation, product architecture, industrial design, concept design, and design-for-manufacturing.

Subject:
Applied Science
Architecture and Design
Business and Communication
Career and Technical Education
Manufacturing
Marketing
Material Type:
Full Course
Textbook
Author:
Eppinger, Steven
Roemer, Thomas
Seering, Warren
Date Added:
01/01/2006
S-Lab: Laboratory for Sustainable Business, Spring 2008
Rating
0.0 stars

How can we translate real-world challenges into future business opportunities? How can individuals, organizations, and society learn and undergo change at the pace needed to stave off worsening problems? Today, organizations of all kinds--traditional manufacturing firms, those that extract resources, a huge variety of new start-ups, services, non-profits, and governmental organizations of all types, among many others--are tackling these very questions. For some, the massive challenges of moving towards sustainability offer real opportunities for new products and services, for reinventing old ones, or for solving problems in new ways. The course aims to provide participants with access and in-depth exposure to firms that are actively grappling with the sustainability-related issues through cases, readings and guest speakers.

Author:
Slaughter, Sarah
System Design and Analysis based on AD and Complexity Theories, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Introduction to axiomatic design. Theoretical basis for rational design. One-FR Design. Multi-FR design. System design. Software design. Product design. Materials and materials process design. Manufacturing system design. Complexities in design: time-independent real complexity, time-independent imaginary complexity, time-dependent combinatorial complexity, and time-dependent periodic complexity. Industrial case studies. This course studies what makes a good design and how one develops a good design. Students consider how the design of engineered systems (such as hardware, software, materials, and manufacturing systems) differ from the "design" of natural systems such as biological systems; discuss complexity and how one makes use of complexity theory to improve design; and discover how one uses axiomatic design theory (AD theory) in design of many different kinds of engineered systems. Questions are analyzed using Axiomatic Design Theory and Complexity Theory. Case studies are presented including the design of machines, tribological systems, materials, manufacturing systems, and recent inventions. Implications of AD and complexity theories on biological systems discussed.

Subject:
Biology
Career and Technical Education
Life Science
Manufacturing
Material Type:
Full Course
Textbook
Author:
Lee, Taesik
Suh, Nam
Date Added:
01/01/2005
Systems Perspectives on Industrial Ecology, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Quantitative techniques for life cycle analysis of the impacts of materials extraction, processing use, and recycling; and economic analysis of materials processing, products, and markets. Student teams undertake a major case study of automobile manufacturing using the latest methods of analysis and computer-based models of materials process.

Subject:
Career and Technical Education
Ecology
Life Science
Manufacturing
Material Type:
Full Course
Textbook
Author:
Kirchain, Randolph
Date Added:
01/01/2006
Thinking About Architecture: In History and at Present, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"This class will be constructed as a lecture-discussion, the purpose being to engage important theoretical issues while simultaneously studying their continuing historical significance. To enhance discussion, three debates will be held in class. Each student will be required to participate in one of these debates. Each student will also be required to write three short papers. Class participation is essential and will be factored into the final grade.The course will portray the history of theory neither as the history of architectural theory exclusively, nor as a series of prepackaged static pronouncements, but as part of a broader set of issues with an active history that must be continually probed and queried. The sequence of topics will not be absolutely predetermined, but some of the primary issues that will be addressed are: pedagogy, professionalism, nature, modernity and the Enlightenment. Classroom discussions and debates are intended to demonstrate differences of opinion and enhance awareness of the consequences that these differences had in specific historical contexts."

Subject:
Applied Science
Architecture and Design
Arts and Humanities
Career and Technical Education
Manufacturing
Material Type:
Full Course
Textbook
Author:
Jarzombek, Mark
Date Added:
01/01/2009