A comprehensive introduction to control system synthesis in which the digital computer …
A comprehensive introduction to control system synthesis in which the digital computer plays a major role, reinforced with hands-on laboratory experience. Covers elements of real-time computer architecture; input-output interfaces and data converters; analysis and synthesis of sampled-data control systems using classical and modern (state-space) methods; analysis of trade-offs in control algorithms for computation speed and quantization effects. Laboratory projects emphasize practical digital servo interfacing and implementation problems with timing, noise, nonlinear devices.
This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms …
This course covers sensing and measurement for quantitative molecular/cell/tissue analysis, in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies; electro-mechanical probes such as atomic force microscopy, laser and magnetic traps, and MEMS devices; and the application of statistics, probability and noise analysis to experimental data.
This course presents the fundamentals of digital signal processing with particular emphasis …
This course presents the fundamentals of digital signal processing with particular emphasis on problems in biomedical research and clinical medicine. It covers principles and algorithms for processing both deterministic and random signals. Topics include data acquisition, imaging, filtering, coding, feature extraction, and modeling. The focus of the course is a series of labs that provide practical experience in processing physiological data, with examples from cardiology, speech processing, and medical imaging. The labs are done on the MIT Server in MATLABĺ¨ during weekly lab sessions that take place in an electronic classroom. Lectures cover signal processing topics relevant to the lab exercises, as well as background on the biological signals processed in the labs.
" This class explores interaction with mobile computing systems and telephones by …
" This class explores interaction with mobile computing systems and telephones by voice, including speech synthesis, recognition, digital recording, and browsing recorded speech. Emphasis on human interface design issues and interaction techniques appropriate for cognitive requirements of speech. Topics include human speech production and perception, speech recognition and text-to-speech algorithms, telephone networks, and spatial and time-compressed listening. Extensive reading from current research literature."
Introduction to microelectromechanical devices (MEMS). Material properties, microfabrication technologies, structural behavior, piezoresistive …
Introduction to microelectromechanical devices (MEMS). Material properties, microfabrication technologies, structural behavior, piezoresistive and capacitive sensing, electrostatic actuation, fluid damping, noise, amplifiers, and feedback systems. Student teams design microsystems (sensors, electronics, and feedback) to meet a set of specifications (sensitivity, frequency response, linearity) using a realistic microfabrication process. Emphasis on modeling and simulation in the design process.
Filtering is the process of removing or separating the unwanted part of …
Filtering is the process of removing or separating the unwanted part of a mixture. In signal processing, filtering is specifically used to remove or extract part of a signal, and this can be accomplished using an analog circuit or a digital device (such as a computer). In this lesson, students learn the impact filtering can have on different types of signals, the concepts of frequency and spectrum, and the connections these topics have to real-world signals such as musical signals. Students also learn the roles that these concepts play in designing different types of filters. The lesson content prepares students for the associated activity in which they use an online demo and a variety of filters to identify the message in a distress signal heavily corrupted by noise.
Students learn the basic principles of filtering as well as how to …
Students learn the basic principles of filtering as well as how to apply digital filters to extract part of an audio signal by using an interactive online demo website. They apply this knowledge in order to isolate a voice recording from a heavily noise-contaminated sound wave. After completing the associated lesson, expect students to be able to attempt (and many successfully finish) this activity with minimal help from the instructor.
Oceanographer Kate Stafford lowers us into the sonically rich depths of the …
Oceanographer Kate Stafford lowers us into the sonically rich depths of the Arctic Ocean, where ice groans, whales sing to communicate over vast distances — and climate change and human noise threaten to alter the environment in ways we don't understand. Learn more about why this underwater soundscape matters and what we might do to protect it.
Unified theory of information with applications to computing, communications, thermodynamics, and other …
Unified theory of information with applications to computing, communications, thermodynamics, and other sciences. Digital signals and streams, codes, compression, noise, and probability. Reversible and irreversible operations. Information in biological systems. Channel capacity. Maximum-entropy formalism. Thermodynamic equilibrium, temperature. The Second Law of Thermodynamics. Quantum computation.
Through investigating the nature, sources and level of noise produced in their …
Through investigating the nature, sources and level of noise produced in their environment, students are introduced to the concept of noise pollution. They learn about the undesirable and disturbing effects of noise and the resulting consequences on people's health, as well as on the health of the environment. They use a sound level meter that consists of a sound sensor attached to the LEGO® NXT Intelligent Brick to record the noise level emitted by various sources. They are introduced to engineering concepts such as sensors, decibel (dB) measurements, and sound pressure used to measure the noise level. Students are introduced to impairments resulting from noise exposure such as speech interference, hearing loss, sleep disruption and reduced productivity. They identify potential noise pollution sources, and based on recorded data, they classify these sources into levels of annoyance. Students also explore the technologies designed by engineers to protect against the harmful effects of noise pollution.
Principles of Industrial Hygiene provides an introduction to the field of industrial …
Principles of Industrial Hygiene provides an introduction to the field of industrial hygiene and to occupational health in general. The instructor focuses on introducing concepts, terminology, and methodology in the practice of industrial hygiene and identifies resource materials. The class would benefit those wishing to pursue a Master's degree in industrial hygiene, those wishing to complete a certificate in occupational health, or for students in allied health fields needing a basic understanding of industrial hygiene.
This course introduces theoretical and practical principles of design of oceanographic sensor …
This course introduces theoretical and practical principles of design of oceanographic sensor systems. Topics include: transducer characteristics for acoustic, current, temperature, pressure, electric, magnetic, gravity, salinity, velocity, heat flow, and optical devices; limitations on these devices imposed by ocean environments; signal conditioning and recording; noise, sensitivity, and sampling limitations; and standards. Lectures by experts cover the principles of state-of-the-art systems being used in physical oceanography, geophysics, submersibles, acoustics. For lab work, day cruises in local waters allow students to prepare, deploy and analyze observations from standard oceanographic instruments.
" This class teaches the fundamentals of signals and information theory with …
" This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but Assignments and Labs differ."
Students learn the connections between the science of sound waves and engineering …
Students learn the connections between the science of sound waves and engineering design for sound environments. Through three lessons, students come to better understand sound waves, including how they change with distance, travel through different mediums, and are enhanced or mitigated in designed sound environments. They are introduced to audio engineers who use their expert scientific knowledge to manipulate sound for music and film production. They see how the invention of the telephone pioneered communications engineering, leading to today's long-range communication industry and its worldwide impact. Students analyze materials for sound properties suitable for acoustic design, learning about the varied environments created by acoustical engineers. Hands-on activities include modeling the placement of microphones to create a specific musical image, modeling and analyzing a string telephone, and applyling what they've learned about sound waves and materials to model a controlled sound room.
Students are introduced to the sound environment as an important aspect of …
Students are introduced to the sound environment as an important aspect of a room or building. Several examples of acoustical engineering design for varied environments are presented. Students learn the connections between the science of sound waves and engineering design for sound environments.
Students learn the decibel reading of various noises and why high-level readings …
Students learn the decibel reading of various noises and why high-level readings damage hearing. Sound types and decibel readings are written on sheets of paper, and students arrange the sounds from the lowest to highest decibel levels. If available, a decibel meter can be used to measure sounds by students.
Students follow the steps of the engineering design process to create their …
Students follow the steps of the engineering design process to create their own ear trumpet devices (used before modern-day hearing aids), including testing them with a set of reproducible sounds. They learn to recognize different pitches, and see how engineers must test designs and materials to achieve the best amplifying properties.
In this seminar, we will discuss some of the main themes that …
In this seminar, we will discuss some of the main themes that have arisen in the field of systems biology, including the concepts of robustness, stochastic cell-to-cell variability, and the evolution of molecular interactions within complex networks.
This is the last of five sound lessons, and it introduces acoustics …
This is the last of five sound lessons, and it introduces acoustics as the science of studying and controlling sound. Students learn how different materials reflect and absorb sound.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.